An Interpretable Hybrid Shapley Additive Explanations Brown Bear Optimization Algorithm Predictive Models for End Bearing Capacity of Rock Socketed Piles

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 65

فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-39-8_013

تاریخ نمایه سازی: 10 آبان 1404

چکیده مقاله:

This study develops an interpretable hybrid predictive framework that combines SHapley Additive exPlanations (SHAP) with the Brown-Bear Optimization Algorithm (BBOA) to enhance the prediction of end-bearing capacity (qu) of rock-socketed piles. BBOA is employed to optimize hyperparameters of four machine learning (ML) models—Artificial Neural Networks (ANN), Support Vector Regression (SVR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Multivariate Adaptive Regression Splines (MARS)—leading to significant improvements in accuracy. A novel, interpretable MARS-based predictive formula is also introduced. The model uses pile diameter (B), embedment depths in soil (Hs) and rock (Hr), rock uniaxial compressive strength (σc), and Geological Strength Index (GSI) as inputs. Comprehensive evaluation using multiple statistical metrics (R², RMSE, MAE, U۹۵) reveals that BBOA-ANFIS achieves the highest accuracy during training, while the optimized MARS model performs best in testing, with ANN consistently showing the weakest results. Compared to previous ML-based and empirical models, the proposed models, especially the MARS formula, demonstrate superior accuracy and reliability, with improvements of ۱۱.۳% in R², ۱۶.۶% in RMSE, and ۱۹.۲% in MAE over the best prior empirical model. Additionally, sensitivity analysis and SHAPE-based model interpretation identified key predictors, ranked by influence as σc > GSI > B > Hr > Hs, with σc being the most influential variable and Hs the least. This hybrid approach provides a robust and interpretable tool for accurate and cost-effective pile design in complex soil-rock environments.

نویسندگان

N. Safaeian Hamzehkolaei

Department of Civil Engineering, Bozorgmehr University of Qaenat, Qaen, Iran

B. Karimi Ferezghi

Department of Civil Engineering, Bozorgmehr University of Qaenat, Qaen, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Hassan A, Rashid H. Estimation of Ultimate Bearing Capacity in ...
  • Zhang L. Prediction of end-bearing capacity of rock-socketed shafts considering ...
  • Yang X, Gong W, Yin Q. Numerical Simulation Study of ...
  • Hoang N-D, Tran X-L, Huynh T-C. Prediction of Pile Bearing ...
  • You R, Mao H. Assessment of ultimate bearing capacity of ...
  • Millán M, Picardo A, Galindo R. Application of artificial neural ...
  • Zarbazoo Siahkali M, Ghaderi A, Bahrpeyma AH, Rashki M, Safaeian ...
  • Zhang G, Hamzehkolaei NS, Rashnoozadeh H, Band SS, Mosavi A. ...
  • نمایش کامل مراجع