Comprehensive Analysis of Probabilistic Centroid Clustering and Artificial Intelligence for Real Time Voice over Internet Protocol Traffic Prediction in Adaptive Networks

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 29

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-39-9_006

تاریخ نمایه سازی: 10 آبان 1404

چکیده مقاله:

In dynamic and heterogeneous network environments, the prediction of Voice over Internet Protocol (VoIP) traffic is complicated by constantly changing conditions such as congestion, bandwidth variability, and latency. This paper proposes an intelligent framework that integrates Centroid Probabilistic Clustering (CPC) with a hybrid CNN-LSTM deep learning model for forecasting dynamic VoIP traffic. CPC utilizes fuzzy C-means clustering to estimate and classify key traffic features, delay, jitter, and packet loss, enabling adaptive and interpretable prediction. The model’s centroids guide the deep learning components, which are a CNN that extracts spatial features, an LSTM captures temporal dependencies, and a Vector Autoregression (VAR) model linear interactions, enhancing robustness. Based on this design, the experimental evaluation demonstrates superior forecasting performance across multiple metrics, achieving, including a training accuracy of ۹۵.۱%, validation accuracy of ۹۲.۸%, MSE of ۰.۰۱۴۸, MAE of ۰.۰۹۳, MAPE of ۶.۳۴%, and an R² of ۰.۹۷۹. Incorporating VAR reduces RMSE from ۰.۱۳۴ to ۰.۱۰۸. The framework adapts efficiently under varying congestion scenarios and cluster densities, proving highly scalable, interpretable, and well-suited for next-generation intelligent network management systems. It is important to note that CPC is positioned as an empirical variant of fuzzy C-means with probabilistic interpretation. While it does not currently include a formal convergence proof, its novelty lies in its empirical robustness and removal of the fuzzifier parameter.

نویسندگان

M. K. Kishore

Department of Electronics and Communication Engineering, GIET University, Gunupur, Odisha, India

M. M. Prasad Reddy

Department of Electronics and Communication Engineering, GIET University, Gunupur, Odisha, India

B. Nancharaiah

Department of Electronics and Communication Engineering, Usha Rama College of Engineering and Technology, Telaprolu, Andhra Pradesh, India

B. Balaji

Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :