A Dynamic Model for Suspended Sediment and Bedload Transport
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 17
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JTCONF03_024
تاریخ نمایه سازی: 9 آبان 1404
چکیده مقاله:
Sedimentation in rivers and reservoirs significantly impacts water resource management by reducing storage capacity and operational efficiency. This manuscript presents a dynamic one-dimensional model for simulating the transport of suspended sediments and bedload, applied to the Colusa Basin Drain in California. The model differentiates between cohesive sediments, such as clay, organic matter, and algae, and non-cohesive sediments, like sand and gravel, integrating hydraulic, physical, and biological processes. It accounts for processes like sediment movement, settling, erosion, and biological interactions, including algae growth and fish-induced resuspension. Implemented over a ۳۰-kilometer stretch of the Colusa Basin Drain, the model was calibrated and validated using three years of field data, achieving ۹۰% accuracy in predicting sediment concentrations. Sensitivity analysis highlighted the model's responsiveness to flow velocity and sediment settling rates, with higher river flows increasing sediment loads by up to ۷۰%. While slightly underpredicting inorganic sediment concentrations, the model accurately captured organic matter and algae dynamics. These findings demonstrate the model's potential for optimizing dam operations and extending reservoir lifespans. By offering a robust framework for sediment transport modeling, this study contributes to sustainable water resource management, with applications to river systems worldwide. Future enhancements should incorporate climate variability and long-term data to improve predictive accuracy.
کلیدواژه ها:
نویسندگان
Mahdi Mohsenzadeh
Assistant Professor, Department of Civil Engineering, National University of skills (NUS), Tehran, Iran