AI-based Fault Detection in Synthetic Seismic Data for Hydrocarbon Exploration
محل انتشار: هفتمین کنفرانس ژئوفیزیک کاربردی در اکتشاف نفت
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 11
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
GEOOIL07_004
تاریخ نمایه سازی: 9 آبان 1404
چکیده مقاله:
Automatic fault detection in seismic data is pivotal for advancing hydrocarbon exploration and geological risk assessment. This study introduces an artificial intelligence (AI)-based framework leveraging the Random Forest (RF) algorithm to achieve accurate fault detection in synthetic seismic data. A dataset of ۲۰۰۰ samples, featuring coherence, dip angle, and curvature, was generated using a normal distribution and preprocessed through standardization, Z-score-based outlier removal, and SMOTE class balancing. Optimized via GridSearchCV, the RF model attained an accuracy of ۰.۶۷, an area under the receiver operating characteristic (ROC) curve (AUC) of ۰.۷۴, and a recall of ۰.۷۳ for the fault class, demonstrating robust detection capability. Visual analyses confirmed the effective separability of the selected features. This framework outperforms traditional manual interpretation, offering transformative applications in hydrocarbon exploration, geological structure analysis, and seismic risk assessment. Future work should validate this approach with real seismic data and incorporate advanced geophysical attributes to enhance generalizability. Overall, this study highlights a pivotal step toward automating fault detection, substantially improving the efficiency and accuracy of geophysical exploration.
کلیدواژه ها:
نویسندگان
Mahdi Chegini
Department of Petroleum Engineering, Ahvaz Faculty of Petroleum, Petroleum University of Technology (PUT), Ahvaz, Iran
Jamshid Moghadasi
Department of Petroleum Engineering, Ahvaz Faculty of Petroleum, Petroleum University of Technology (PUT), Ahvaz, Iran
Mohammad Jamialahmadi
Department of Petroleum Engineering, Ahvaz Faculty of Petroleum, Petroleum University of Technology (PUT), Ahvaz, Iran