AI-based Fault Detection in Synthetic Seismic Data for Hydrocarbon Exploration

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 11

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

GEOOIL07_004

تاریخ نمایه سازی: 9 آبان 1404

چکیده مقاله:

Automatic fault detection in seismic data is pivotal for advancing hydrocarbon exploration and geological risk assessment. This study introduces an artificial intelligence (AI)-based framework leveraging the Random Forest (RF) algorithm to achieve accurate fault detection in synthetic seismic data. A dataset of ۲۰۰۰ samples, featuring coherence, dip angle, and curvature, was generated using a normal distribution and preprocessed through standardization, Z-score-based outlier removal, and SMOTE class balancing. Optimized via GridSearchCV, the RF model attained an accuracy of ۰.۶۷, an area under the receiver operating characteristic (ROC) curve (AUC) of ۰.۷۴, and a recall of ۰.۷۳ for the fault class, demonstrating robust detection capability. Visual analyses confirmed the effective separability of the selected features. This framework outperforms traditional manual interpretation, offering transformative applications in hydrocarbon exploration, geological structure analysis, and seismic risk assessment. Future work should validate this approach with real seismic data and incorporate advanced geophysical attributes to enhance generalizability. Overall, this study highlights a pivotal step toward automating fault detection, substantially improving the efficiency and accuracy of geophysical exploration.

نویسندگان

Mahdi Chegini

Department of Petroleum Engineering, Ahvaz Faculty of Petroleum, Petroleum University of Technology (PUT), Ahvaz, Iran

Jamshid Moghadasi

Department of Petroleum Engineering, Ahvaz Faculty of Petroleum, Petroleum University of Technology (PUT), Ahvaz, Iran

Mohammad Jamialahmadi

Department of Petroleum Engineering, Ahvaz Faculty of Petroleum, Petroleum University of Technology (PUT), Ahvaz, Iran