Synergistic Content Understanding: Misinformation Detection through Contrastive Regularization and Embedding-Space Mixup
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 10
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CSTE-2-4_006
تاریخ نمایه سازی: 4 آبان 1404
چکیده مقاله:
Automated fake-news detection is a critical challenge for preserving the integrity of the online information ecosystem. Current state-of-the-art systems increasingly depend on external context, such as social propagation graphs, which fundamentally limits their applicability in real-time or “cold-start” scenarios where such signals are unavailable. We challenge the prevailing assumption that this external context is indispensable for top-tier performance. Instead, we argue that the primary bottleneck is the brittle and poorly structured content representations learned via standard model fine-tuning. To address this, we propose a synergistic training framework that sculpts a more robust and discriminative embedding space. Our method harmonizes two complementary and powerful techniques: (۱) supervised contrastive regularization, which explicitly structures the feature space by enforcing tight intra-class clustering and clear inter-class separation, and (۲) embedding-space mixup, a regularization strategy that creates smoother, more generalizable decision boundaries. On two widely used public benchmarks, Twitter۱۵ and Twitter۱۶, our purely content-only framework establishes a new state-of-the-art achieving Weighted F۱-scores of ۹۴.۲% and ۹۴.۷%, respectively, significantly outperforming not only other text-based models but also leading context-aware methods. Our results demonstrate that, with a sufficiently rigorous training regimen, the intrinsic signals within text alone can drive superior veracity assessment.
کلیدواژه ها:
نویسندگان
Mojtaba Padashi
Department of Computer Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran
Meysam Roostaee
Department of Computer Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran
Hassan Zeynali
Department of Computer Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran
Alireza Jafari
Department of Computer Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :