Multi-Period Portfolio Selection: Balancing Return and Squared Value at Risk Objectives

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 32

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JDAID-1-1_005

تاریخ نمایه سازی: 4 آبان 1404

چکیده مقاله:

In this paper, we have modeled and optimized the multi-period stock portfolio by considering variance heterogeneity and determining the optimal number of stock packages. This model seeks to maximize the return and minimize the risk of the investment portfolio using the squared value at risk. Due to the investment portfolio in this research is based on predicted values; therefore, autoregressive modeling and variance heterogeneity have been used to predict stocks returns. Prediction is done with Python software. The linearized mathematical model for optimizing the portfolio in each period was solved using GAMS software. Furthermore, three stock portfolio designs, including predicting returns and optimizing periodic portfolio, a random portfolio, and a combination of low-risk and high-yield cases have been investigated. In two designs, the random portfolio and the portfolio with ۵ high-return and ۵ low-risk stocks, with the increase in the risk rate level, the annual return increases, which indicates the consistent relation between risk and return. In the periodic portfolio, this trend has been observed up to ۲۰% risk level, while at ۲۵% risk, there has been a decrease in return. The periodic portfolio has shown more fluctuations in profitability, while the combined approach and the random portfolio have had a more stable trend in increasing profitability with increasing risk.

نویسندگان

Ghazaleh Kazemi

Master of Science Student, University of Science and Culture

Morteza Khakzar Bafruei

Associate Professor of Industrial Engineering, University of Science and Culture

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :