Proposing a Developed Gram–Schmidt Algorithm to Construct Orthogonal Unit Vectors (A Mathematical and Practical Approach)

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 22

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JDAID-1-2_005

تاریخ نمایه سازی: 4 آبان 1404

چکیده مقاله:

It is no secret that mathematics has always been a guide to solving many problems in human life. Humans, in their decision-making processes, constantly deal with various variables and indicators, and one of the approaches to analyzing these variables is the use of multi-criteria decision-making methods. However, a significant challenge in applying these techniques is the independence of criteria or indicators relative to one another. One of the modern solutions for achieving independence among variables (or indicators) is the use of the Gram-Schmidt method; however, the accuracy of this algorithm might decline when it is implemented on large-scale vectors. This paper proposes a Developed Gram–Schmidt Algorithm (DGSA). The Schmidt vectors obtained from the proposed algorithm are prone to a lower error rate than those resulting from the Gram–Schmidt algorithm. To demonstrate the superiority of the proposed algorithm, several different numerical examples have also been used. At the end of the research, a case study based on the proposed approach was also conducted at Shazand Oil Refinery (SOR) to demonstrate the applicability of this approach in a real-world example. The findings have shown that the proposed approach has relatively high accuracy.

نویسندگان

Hossein Jafari

Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran

Asma Etebari

Department of Industrial Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran.

Mohsen Jafari

School of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :