Comparison of optimizers (Adam, RMSprop, SGD and Adagrad) in a neural network for mineral resource classification: a case study in a copper deposit in Peru

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 35

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMGE-59-3_011

تاریخ نمایه سازی: 3 آبان 1404

چکیده مقاله:

TThis study has compared the performance of various optimizers in mineral resource classification using a multilayer perceptron artificial neural network (MLP) applied to a copper deposit in Peru. The optimizers Adam (Adaptive moment estimation), RMSprop (Root mean square propagation), SGD (Stochastic gradient descent), and Adagrad (Adaptive gradient algorithm) were evaluated to assess their impact on the spatial continuity of block classification. A total of ۳۱۸,۴۴۳ blocks were estimated using ordinary kriging, based on key variables including estimated grade, kriging variance, average sample distance, number of composited samples, the kriging Lagrangian, and geological confidence. The methodology involved a mixed multivariable block-by-block clustering using the k-prototypes algorithm, followed by block smoothing through an artificial neural network with different optimizers. Results show that the Adam optimizer achieved the highest overall accuracy (۹۳%), outperforming both RMSprop and SGD (۹۲%), as well as Adagrad (۹۰%). In addition, Adam yielded a more homogeneous classification of mineral resources. It categorized ۷۵,۸۶۹ blocks as measured (۱,۳۹۵.۹۹ Mt total tonnage, ۵.۴۰ Mt fine copper), ۱۲۰,۰۳۹ as indicated (۲,۲۰۸.۷۲ Mt and ۶.۵۶ Mt fine copper), and ۱۲۲,۵۳۵ as inferred (۲,۲۵۴.۶۴ Mt and ۶.۲۹ Mt fine copper). In conclusion, the model trained with the Adam optimizer demonstrated superior precision and stability in mineral resource classification, effectively mitigating the “spotty dog effect” and improving the geological coherence of the block model

نویسندگان

Marco Cotrina-Teatino

Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Perú,

Jairo Marquina-Araujo

Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Perú,

Jose Mamani-Quispe

Faculty of Chemical Engineering, National University of the Altiplano, Puno, Perú.

Solio Arango-Retamozo

Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Perú,

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Coates, D. (۱۹۸۵). Mineral resources. In Geology and Society, ۱۹–۴۶ ...
  • Dubiński, J. (۲۰۱۳). Sustainable Development of Mining Mineral Resources. Journal ...
  • Ericsson, M., Löf, O. (۲۰۱۹). Mining’s contribution to national economies ...
  • Van Gosen, B., Verplanck, P., Long, K., Gambogi, J., Seal, ...
  • Henckens, MLCM., Biermann, FHB., Driessen, PPJ. (۲۰۱۹). Mineral resources governance: ...
  • Crowson, PCF. (۲۰۱۱). Mineral reserves and future minerals availability. Mineral ...
  • Zerzour, O., Gadri, L., Hadji, R., Mebrouk, F., Hamed, Y. ...
  • Hartman, HL., Mutmansky, JM. (۲۰۰۲). Introductory mining engineering. Introductory Mining ...
  • CIM. (۲۰۱۹). Estimation of mineral resources & mineral reserves best ...
  • JORC Code. (۲۰۱۲). Australasian code for reporting of exploration results, ...
  • SAMREC. (۲۰۱۶). The South African code for the reporting of ...
  • Goodfellow, RC., Dimitrakopoulos, R. (۲۰۱۶). Global optimization of open pit ...
  • Menin, R., Diedrich, C., Reuwsaat, JD., De Paula, WF. (۲۰۱۷). ...
  • Battalgazy, N., Madani, N. (۲۰۱۹). Categorization of mineral resources based ...
  • Afzal, P., Gholami, H., Madani, N., Yasrebi, A., Sadeghi, B. ...
  • Guardiano, E., Parker, H., Isaaks, E. (۱۹۹۵). Prediction of Recoverable ...
  • Kingston, G. (۱۹۷۷). Reserve classification of identified nonfuel mineral resources ...
  • Dimitrakopoulos, R., Chou, C., Godoy, M. (۲۰۰۸). Resource / Reserve ...
  • Asghari, O., Esfahani, NM. (۲۰۱۴). Erratum to: A new approach ...
  • Peattie, R., Dimitrakopoulos, R. (۲۰۱۳). Forecasting Recoverable Ore Reserves and ...
  • Tajvidi, E., Monjezi, M., Asghari, O., Emery, X., Foroughi, S. ...
  • Deustch, C., Leaungthong, O., Ortiz, J. (۲۰۰۷). Case for geometric ...
  • Dominy, S., Stephenson, P., Annels, A. (۲۰۰۱). Classification and reporting ...
  • Dohm, C. (۲۰۰۵). Quantifiable Mineral Resource Classification: A Logical Approach. ...
  • Cevik, IS., Leuangthong, O., Caté, A., Ortiz, JM. (۲۰۲۱). On ...
  • Stephenson, P., Stoker, P. (۲۰۰۱). Mineral resource and ore reserve ...
  • Owusu, S. (۲۰۱۹). Critical Review of Mineral Resource Classification Techniques ...
  • Machuca-Mory, D., Deutsch, C. (۲۰۰۶). A Program for Robust Calculation ...
  • Delaunay, B. (۱۹۳۴). Sur la sphere vide. Bulletin de l’Académie ...
  • Wilde, B., Deutsch, C V. (۲۰۱۰). Data spacing and uncertainty: ...
  • Emery, X., Ortiz, JM., Rodríguez, JJ. (۲۰۰۶). Quantifying uncertainty in ...
  • Mucha, J., Wasilewska-Błaszczyk, M., Augus̈cik, J. (۲۰۱۵). Categorization of mineral ...
  • Taghvaeenezhad, M., Shayestehfar, M., Moarefvand, P., Rezaei, A. (۲۰۲۰). Quantifying ...
  • Nowak, M., Leuangthong, O. (۲۰۱۹). Optimal drill hole spacing for ...
  • Journel, AG. (۱۹۸۳). Nonparametric estimation of spatial distributions. Journal of ...
  • Jelvez, E., Ortiz, J., Morales, N., Askari, H., Nelis, G. ...
  • Ribeiro, DT., Filho, CGM., de Souza, LE., Costa, JFCL., de ...
  • Madani, N. (۲۰۲۰). Mineral resource classification based on uncertainty measures ...
  • Wawruch, TM., Betzhold, JF. (۲۰۰۵). Mineral Resource Classification Through Conditional ...
  • Isatelle, F., Rivoirard, J. (۲۰۱۹). Mineral Resources classification of a ...
  • Silva, DSF., Boisvert, JB. (۲۰۱۴). Mineral resource classification: A comparison ...
  • Arik, A. (۲۰۰۲). Comparison of resource classification methodologies with a ...
  • Abzalov, M. (۲۰۱۶). Methodology of the mineral resource classification. Modern ...
  • Caers, J. (۲۰۱۱). Modeling Uncertainty in the Earth Sciences. Modeling ...
  • Pyrcz, M., Deutsch, C. (۲۰۱۴). Geostatistical Reservoir Modeling (۲nd Edition). ...
  • Hernández, H. (۲۰۲۴). A semiautomatic multi criteria method for mineral ...
  • Duggan, S., Grills, A., Stiefenhofer, J., Thurston, M. (۲۰۱۷). Development ...
  • Mohanlal, K., Stevenson, P. (۲۰۱۰). Anglo American Platinum’s approach to ...
  • Rocha V, A., Bassani, MA. (۲۰۲۳). Practical application of a ...
  • Ortiz, J., Deutsch, C. (۲۰۰۳). A practical way to summarize ...
  • Glacken, I., Snowden, D. (۲۰۰۱). Mineral resource estimation, In Edwards, ...
  • Revuelta, MB. (۲۰۱۸). Mineral Resources :From Exploration to Sustainability Assessment ...
  • Da Rocha, MM., Yamamoto, JK. (۲۰۰۰). Comparison between kriging variance ...
  • Rossi, ME., Deutsch, C V. (۲۰۱۴). Mineral Resource Estimation. doi:https://doi.org/۱۰.۱۰۰۷/۹۷۸-۱-۴۰۲۰-۵۷۱۷-۵ ...
  • Emery, X. (۲۰۰۸). Uncertainty modeling and spatial prediction by multi-Gaussian ...
  • McManus, S., Rahman, A., Horta, A., Coombes, J. (۲۰۲۰). Applied ...
  • Riquelme, ÁI., Ortiz, JM. (۲۰۲۱). Uncertainty Assessment over any Volume ...
  • Fouedjio, F., Klump, J. (۲۰۱۹). Exploring prediction uncertainty of spatial ...
  • Mery, N., Marcotte, D. (۲۰۲۲). Assessment of Recoverable Resource Uncertainty ...
  • Lindi, OT., Aladejare, AE., Ozoji, TM., Ranta, J-P. (۲۰۲۴). Uncertainty ...
  • Mery, N., Emery, X., Cáceres, A., Ribeiro, D., Cunha, E. ...
  • Stephenson, PR., Allman, A., Carville, DP., Stoker, PT., Mokos, P., ...
  • Dumakor-Dupey, NK., Arya, S. (۲۰۲۱). Machine learning—a review of applications ...
  • Solomatine, DP., Shrestha, DL. (۲۰۰۹). A novel method to estimate ...
  • Li, T., Xia, Q., Ouyang, Y., Zeng, R., Liu, Q., ...
  • Zhao, J., Chi, H., Shao, Y., Peng, X. (۲۰۲۲). Application ...
  • Farhadi, S., Tatullo, S., Boveiri Konari, M., Afzal, P. (۲۰۲۴). ...
  • Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., ...
  • Cotrina, M.A., Marquina, J.J., Riquelme, A.I. (۲۰۲۵). Comparison of Machine ...
  • Desai, C. (۲۰۲۰). Comparative Analysis of Optimizers in Deep Neural ...
  • Hassan, E., Shams, MY., Hikal, NA., Elmougy, S. (۲۰۲۳). The ...
  • Nanni, L., Maguolo, G., Lumini, A. (۲۰۲۱). Exploiting Adam-like Optimization ...
  • Hernández, H., Alberdi, E., Goti, A., Oyarbide-Zubillaga, A. (۲۰۲۳). Application ...
  • Bianchi, M., Zheng, C. (۲۰۰۹). SGeMS: A free and versatile ...
  • Remy, N. (۲۰۰۵). S-GeMS: The Stanford Geostatistical Modeling Software: A ...
  • Ali, Rezaei., Hossein, Hassani., Parviz, Moarefvand., Abbas, Golmohammadi. (۲۰۱۹) Grade ...
  • Heuvelink, GBM., Pebesma, EJ. (۲۰۰۲). Is The Ordinary Kriging Variance ...
  • da Silva, CZ., Nisenson, J., Boisvert, J. (۲۰۲۲). Grade Control ...
  • Tülay., BAYRAMİN, T. (۲۰۱۶). Assessment of ınverse distance weighting (ıdw) ...
  • Estrada-Gil, JK., Fernández-López, JC., Hernández-Lemus, E., Silva-Zolezzi, I., Hidalgo-Miranda, A., ...
  • Marinos, V., Marinos, P., Hoek, E. (۲۰۰۵). The geological strength ...
  • Emery, X. (۲۰۰۹). The kriging update equations and their application ...
  • Adhikary, SK., Muttil, N., Yilmaz, AG. (۲۰۱۶). Genetic Programming-Based Ordinary ...
  • Marquina-Araujo, JJ., Cotrina-Teatino, MA., Cruz-Galvez, JA., Noriega-Vidal, EM., Vega-Gonzalez, JA. ...
  • Dorman, KS., Maitra, R. (۲۰۲۲). An efficient k-modes algorithm for ...
  • Copper Ore Grade Prediction using Machine Learning Techniques in a Copper Deposit [مقاله ژورنالی]
  • Cotrina, M., Marquina, J., Mamani, J., Arango, S., Gonzalez, J., ...
  • Predicting Open Pit Mine Production using Machine Learning Techniques: A Case Study in Peru [مقاله ژورنالی]
  • Joseph, FJJ., Nonsiri, S., Monsakul, A. (۲۰۲۱). Keras and TensorFlow: ...
  • Kingma, DP., Ba, JL. (۲۰۱۵). Adam: A method for stochastic ...
  • Elshamy, R., Abu-Elnasr, O., Elhoseny, M., Elmougy, S. (۲۰۲۳). Improving ...
  • Tian, Y., Zhang, Y., Zhang, H. (۲۰۲۳). Recent Advances in ...
  • Lydia, AA., Francis, FS. (۲۰۱۹). Adagrad - An Optimizer for ...
  • Yacouby, R., Axman, D. (۲۰۲۰). Probabilistic Extension of Precision, Recall, ...
  • Dalianis, H. (۲۰۱۸). Evaluation Metrics and Evaluation. Clinical Text Mining. ...
  • نمایش کامل مراجع