Integrated high frequency RF circuit design using deep reinforcement learning via proximity policy optimization method

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 13

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-16-11_010

تاریخ نمایه سازی: 30 مهر 1404

چکیده مقاله:

The automatic design of analog circuits is a challenging task due to the high complexity of the design, which is caused by the search space and the sometimes conflicting parameters. In the article, a trial-and-error-based approach that combines reinforcement learning and deep neural networks is used to determine the values of circuit elements have been used. In methods based on reinforcement learning, the agent tries to act like an expert designer and maybe better than that by trial and error and using the information he gets from the environment. In this article, one of the latest methods of deep reinforcement learning called approximate policy optimization (PPO) is used. To show the efficiency of the above method, a cascaded LNA circuit is considered. And the voltages are determined by the learning agent to optimize the circuit design requirements such as gain, noise figure and power consumption. To train the learning agent in the reward function, two categories of adverbs have been included in such a way that the main goal is to optimize the gain and noise figure and the secondary goal is to focus on other requirements such as power consumption. The environment which is the amplifier circuit is simulated in the Hspice software in ۰.۱۸ micrometer technology from TSMC company at the frequency of ۵.۷ GHz and the learning agent is also defined in the MATLAB environment which has been able to design the values of the circuit elements by interacting with the environment.

نویسندگان

Ali Khakshoor Shandiz

Faculty of Electrical Engineering and Medical Engineering, Sajjad University, Mashhad, Iran

Abbas Golmakani

Faculty of Electrical Engineering and Medical Engineering, Sajjad University, Mashhad, Iran

Amin Noori

Faculty of Electrical Engineering and Medical Engineering, Sajjad University, Mashhad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M.V. Harsha and B.P. Harish, Artificial neural network model for ...
  • A. Anthony, C. Kyungwook, and L. Sung Kyu, VLSI placement ...
  • S. Fujimoto, H. Hoof, and D. Meger, Addressing function approximation ...
  • L. Gil, N.R. Marku, A.L. Edward, and A.S. Sanjit, Lwarning ...
  • T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, ...
  • W. Haaswijk, E. Collins, B. Seguin, M. Soeken, F. Kaplan, ...
  • H. Dong, Z. Ding, and S. Zhang, Deep Reinforcement Learning, ...
  • A. Hosny, S. Hashemi, M. Shalan, and S. Reda, DRiLLS: ...
  • G. Ian, B. Yoshua, and C. Aaron, Deep Learning, MIT ...
  • Y. Li, Y. Wang, Y. Li, R. Zhou, and Z. ...
  • G.L. Michail and L.L. Michael, Learning to select branching rules ...
  • A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E.M. Songhori, ...
  • A. Mirhoseini, H. Pham, Q.V. Le, B. Steiner, Y. Zhou, ...
  • S.D. Murphy and K.G. McCarthy, Automated design of CMOS operational ...
  • B. Razavi, Design of Analog CMOS, McGraw-Hill Education (۲۰۱۷) ...
  • B. Razavi, RF Microelectronics, Prentice Hall (۱۹۹۷) ...
  • J. Schulman, S. Levine, P. Abbeel, M. Jordan and P. ...
  • J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. ...
  • K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi, and B. ...
  • M. Sewak, Deep Reinforcement Learning-Frontiers of Artificial Intelligence, Springer, ۲۰۱۹ ...
  • R.S. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT ...
  • P.L. Timothy, J.H. Jonathan, P. Alexander, H. Nicolas, E. Tom, ...
  • H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, ...
  • H. Wang, J. Yang, H.S. Lee, and S. Han, Learning ...
  • L. Yann, B. Yoshua, and H. Geoffrey, Deep learning-review, Nature ...
  • L. Yi-Chen, L. Jeehyun, A. Anthony, S. Kambiz, and L. ...
  • Z. Zhao and L. Zhang, Deep reinforcement learning for analog ...
  • نمایش کامل مراجع