Spatial prediction of the number of wildfire hotspots using negative binomial conditional autoregressive random forest

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 18

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_GJESM-11-4_009

تاریخ نمایه سازی: 30 مهر 1404

چکیده مقاله:

BACKGROUND AND OBJECTIVES: Predicting the spatial distribution of wildfire hotspots is crucial for forest fire mitigation, particularly in high-risk regions such as Kalimantan Island, Indonesia. These hotspots are locations with thermal anomalies above normal background temperature. An integrated framework is proposed: a negative binomial conditional autoregressive random forest. The approach is designed to capture nonlinearity in meteorological drivers, over-dispersion in the number of hotspots, and spatial dependence among neighboring grid cells. The aim of this study is to predict the number of hotspots and to identify the meteorological factors that most strongly influence the emergence of hotspots.METHODS: The number of hotspots in Kalimantan for September ۲۰۲۴ were analyzed on a grid. Predictors included air temperature, precipitation, relative humidity, wind speed, and dry days. These variables were aggregated into spatial grids with a resolution of ۰.۲۵ degree by ۰.۲۵ degree. In a simulation study, levels of spatial autocorrelation, alternative spatial weight matrices, ratios of predictor variance to spatial residual variance, and sample sizes were varied. Model performance was evaluated using root mean square error and mean absolute error.FINDINGS: The proposed model consistently outperformed the conventional conditional autoregressive model in both simulated and empirical datasets. Gains were largest when predictor variance exceeded spatial residual variance. Across most scenarios, reductions in root mean square error by ۲۴ percent and in mean absolute error by ۳۳.۳ percent were observed. Results were found to be robust to alternative spatial weight matrices. In the empirical application, the model accurately predicted the spatial distribution of hotspots. Overestimation occurred in approximately ۲۱.۴۳ percent of the grid cells of the observed. Air temperature and relative humidity were identified as the most influential predictors, but their relative importance varied across spatial clusters. Meteorological effects were weaker in wet, humid clusters and stronger in hot, dry clusters.CONCLUSION: Practical accuracy improvements for spatial prediction of the number of hotspots are generated by the integrated framework. Incorporation into operational early-warning systems and decision support for forest and land fire prevention in fire-prone tropical regions is recommended.

نویسندگان

I. Azis

School of Data Science, Mathematics, and Informatics, IPB University, Bogor, Indonesia

A. Djuraidah

School of Data Science, Mathematics, and Informatics, IPB University, Bogor, Indonesia

M.N. Aidi

School of Data Science, Mathematics, and Informatics, IPB University, Bogor, Indonesia

Indahwati

School of Data Science, Mathematics, and Informatics, IPB University, Bogor, Indonesia

A. Sopaheluwakan

Meteorological, Climatological, and Geophysical Agency, BMKG, Jakarta, Indonesia

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abatzoglou, J.T.; Kolden, C.A.; Cullen, A.C.; Sadegh, M.; Williams, E.L.; ...
  • Agresti, A.; Kateri, M., (۲۰۲۲). Foundation of statistics for data ...
  • Ardiyani, E.; Nurdiati, S.; Sopaheluwakan, A.; Septiawan, P.; Najib, M.K., ...
  • Besag, J., (۱۹۷۴). Spatial interaction and the statistical analysis of ...
  • Breiman, L., (۲۰۰۱). Random forests. Mach. Learn., ۴۵: ۵–۳۲ (۲۸ ...
  • Bustillo Sánchez, M.; Tonini, M.; Mapelli, A.; Fiorucci, P., (۲۰۲۱). ...
  • Coly, S.; Garrido, M.; Abrial, D.; Yao, A.F., (۲۰۲۱). Bayesian ...
  • Cameron, A.C.; Trivedi, P.K., (۲۰۱۳). Regression analysis of count data. ...
  • Dumelle, M.; Higham, M.; Ver Hoef, J.M., (۲۰۲۳). spmodel: Spatial ...
  • Elsayad, A.M.; Zeghid, M.; Elsayad, K.A.; Khan, A.N.; Baareh, A.K.M.; ...
  • Georganos, S.; Grippa, T.; Niang Gadiaga, A.; Linard, C.; Lennert, ...
  • Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J., (۲۰۰۳). An ...
  • Graham, A.M.; Spracklen, D.V.; McQuaid, J.B.; Smith, T.E.; Nurrahmawati, H.; ...
  • Griffith, D.A., (۲۰۲۵). Beyond auto‐models: self‐correlated sui‐model respecifications. Geogr. Anal., ...
  • Grillakis, M.; Voulgarakis, A.; Rovithakis, A.; Seiradakis, K.D.; Koutroulis, A.; ...
  • Heo, S.; Park, S.; Lee, D.K., (۲۰۲۳). Multi-hazard exposure mapping ...
  • Horton, A.J.; Virkki, V.; Lounela, A.; Miettinen, J.; Alibakhshi, S.; ...
  • Hu, J.; Szymczak, S., (۲۰۲۳). A review on longitudinal data ...
  • Ibrahim, A.; Withaningsih, S.; Kinseng, R.; Parikesit; Muhamad, D., (۲۰۲۴). ...
  • James, G.; Witten, D.; Hastie, T.; Tibshirani, R., (۲۰۱۳). An ...
  • Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; ...
  • Kadir, E.A.; Kung, H.T.; AlMansour, A.A.; Irie, H.; Rosa, S.L.; ...
  • Karurung, W.S.; Lee, K.; Lee, W., (۲۰۲۵). Assessment of forest ...
  • Lan, Z.; Su, Z.; Guo, M.; Alvarado, E.C.; Guo, F.; ...
  • Lee, D.; Mitchell, R., (۲۰۱۳). Locally adaptive spatial smoothing using ...
  • Lin, J.; Zhuang, Y.; Zhao, Y.; Li, H.; He, X.; ...
  • Macbride, C.; Davies, V.; Lee, D., (۲۰۲۵). A spatial autoregressive ...
  • Milà, C.; Ludwig, M.; Pebesma, E.; Tonne, C.; Meyer, H., ...
  • Nie, S.; Chen, H.; Sun, X.; An, Y., (۲۰۲۴). Spatial ...
  • Pascolini-Campbell, M.; Fisher, J.B.; Cawse-Nicholson, K.; Lee, C.M.; Stavros, N., ...
  • Pebesma, E.; Bivand, R., (۲۰۲۳). Spatial data science with applications ...
  • Porter, E.M.; Franck, C.T.; Ferreira, M.A.R., (۲۰۲۴). Objective bayesian model ...
  • Rohimahastuti, F.; Djuraidah, A.; Wijayanto, H., (۲۰۲۵). Spatiotemporal bayes model ...
  • Saha, A.; Basu, S.; Datta, A., (۲۰۲۳). Random forests for ...
  • Sanderson, B.M.; Fisher, R.A., (۲۰۲۰). A fiery wake-up call for ...
  • Sapkota, S.; Joshi, K.P.; Kuikel, S.; Kuinkel, D.; Bhandari, B.; ...
  • Segal, M.; Xiao, Y., (۲۰۱۱). Multivariate random forests. Wiley Interdiscip. ...
  • Schmidt, A.; Ellsworth, L.M.; Boisen, G.A.; Novita, N.; Malik, A.; ...
  • Shmuel, A.; Heifetz, E., (۲۰۲۲). Global wildfire susceptibility mapping based ...
  • Tessema, Z.T.; Tesema, G.A.; Ahern, S.; Earnest, A., (۲۰۲۳). A ...
  • Trucchia, A.; Izadgoshasb, H.; Isnardi, S.; Fiorucci, P.; Tonini, M., ...
  • Wang, S.; Gao, K.; Zhang, L.; Yu, B.; Easa, S. ...
  • Wang, Y.; Chen, X.; Xue, F., (۲۰۲۴). A review of ...
  • Yang, D.; Xie, K.; Ozbay, K.; Yang, H., (۲۰۲۱). Fusing ...
  • Zhu, Z.; Deng, X.; Zhao, F.; Li, S.; Wang, L., ...
  • نمایش کامل مراجع