Autonomous weapon systems impact on incidence of armed conflict: rejecting the ‘lower threshold for war argument’
فایل این در 17 صفحه با فرمت PDF قابل دریافت می باشد
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
چکیده :
In the above, the aim of the infinite and revolutionary research on autonomous security systems in armed conflict was to refute the “low threshold argument for war.” Some advocates of banning autonomous weapons systems (AWS) argue that the adoption of these systems lowers the threshold for war and is therefore morally undesirable. This article argues against this. First, removing a single unit from the war-making pool does not automatically increase the likelihood of war. The analysis and data from more robust correlation analyses show that this is true only for a fraction of the potential. Second, the adoption of AWS also affects other limitations on war in complex and unpredictable ways. Without a full analysis of these other effects, it cannot be said that the adoption of AWS for war is significant enough to justify action. Third, the morality of war does not aim to reduce the number of wars in the simple sense, but rather to resist, deter, and thereby reduce unjustified aggression. Consequently, lowering the threshold for defensive war, especially for collective defense wars and/or humanitarian interventions, would be a good outcome that potentially offsets the potential impact on aggressive wars. Finally, I cannot deter aggressive wars with sufficiently strong alternative mechanisms, and I would therefore refrain from adopting AWS for that reason. Taken together, these arguments prove that the introduction of AWS over war cannot be distinguished through a priori philosophical analysis. Consequently, the “lower threshold for war” argument cannot provide support for a ban on AWS.
کلیدواژه ها:
نویسندگان
مهدی خمری
"Researcher and Assistant Professor, PhD in Political Science (International Relations), Islamic Azad University, Zahedan, Iran"
مراجع و منابع این :
لیست زیر مراجع و منابع استفاده شده در این را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود لینک شده اند :