Sequential \Diamond Henstock Integral for Locally Convex Space Valued Function on Time Scale

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 9

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CJMS-14-2_001

تاریخ نمایه سازی: 28 مهر 1404

چکیده مقاله:

Let X be a Hausdorff locally convex topological vector space with \Omega and X^{*} as its topology and Topological dual respectively. Suppose f:[۰,۱]\rightarrow X is a function defined on X and \rho(X), a family of \rho-continuous seminorms on X such that the topology is generated by \rho(X). Is f Sequential Mcshane(SMcS) and Sequential Henstock(SH) integrable with respect to the semi-norm on time scale? Do these integrals coincide and relate to other integrals such as Pettis and Bochner for which the Sequential Henstock lemma holds for the characterization of locally Convex space on time scale? It is the purpose of this paper to give affirmative answers to these questions.

کلیدواژه ها:

Hausdorff Topological vector Space ، guages ، Topological dual ، Semi-norms ، time scale

نویسندگان

Victor Iluebe

Department of Mathematics and Computing, Maranatha University, Lagos, Nigeria.

David Afariogun

Mathematics Department, Faculty of Science, Ajayi Crowther University, Oyo, Nigeria

Christiana Iluno

Mathematics Department, School of Pure and Applied Sciences, Lagos State University of Science and Technology, lkorodu, Nigeria

Joshua Ajilore

Mathematics Department, School of Pure and Applied Sciences, Lagos State University of Science and Technology, lkorodu, Nigeria