Sequential \Diamond Henstock Integral for Locally Convex Space Valued Function on Time Scale
محل انتشار: مجله علوم ریاضی کاسپین، دوره: 14، شماره: 2
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 9
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CJMS-14-2_001
تاریخ نمایه سازی: 28 مهر 1404
چکیده مقاله:
Let X be a Hausdorff locally convex topological vector space with \Omega and X^{*} as its topology and Topological dual respectively. Suppose f:[۰,۱]\rightarrow X is a function defined on X and \rho(X), a family of \rho-continuous seminorms on X such that the topology is generated by \rho(X). Is f Sequential Mcshane(SMcS) and Sequential Henstock(SH) integrable with respect to the semi-norm on time scale? Do these integrals coincide and relate to other integrals such as Pettis and Bochner for which the Sequential Henstock lemma holds for the characterization of locally Convex space on time scale? It is the purpose of this paper to give affirmative answers to these questions.
کلیدواژه ها:
نویسندگان
Victor Iluebe
Department of Mathematics and Computing, Maranatha University, Lagos, Nigeria.
David Afariogun
Mathematics Department, Faculty of Science, Ajayi Crowther University, Oyo, Nigeria
Christiana Iluno
Mathematics Department, School of Pure and Applied Sciences, Lagos State University of Science and Technology, lkorodu, Nigeria
Joshua Ajilore
Mathematics Department, School of Pure and Applied Sciences, Lagos State University of Science and Technology, lkorodu, Nigeria