Physics-Informed Machine Learning for the Numerical Solution of Linear Oscillatory Systems

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 65

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AEROSPACE23_206

تاریخ نمایه سازی: 28 مهر 1404

چکیده مقاله:

This study explores the application of Physics-Informed Neural Networks (PINNs) for solving systems of ordinary differential equations (ODES), with a particular focus on capturing oscillatory solutions. Initial experiments with a simple neural network (SNN) without physics-informed constraints revealed significant limitations in purely data-driven approaches, emphasizing the necessity of embedding physical laws into the learning process. By incorporating governing equations into the loss function, PINNS offer a robust framework for approximating solutions beyond the training domain. However, early implementations of PINNS with curriculum learning faced challenges, including phase shifts in predicted oscillations and sensitivity to activation functions. To enhance accuracy, we introduced the activation function f(x) = x + sin(x), which improved the network's capacity to learn oscillatory behaviors. Additionally, systematic tuning of curriculum learning parameters and loss function balancing proved critical in refining performance. The optimized PINN approach successfully captured the oscillatory dynamics of the ODE system, closely matching numerical solutions. These findings highlight the importance of activation function design, curriculum learning strategies, and loss function optimization in training PINNS effectively. Future work will focus on adaptive curriculum learning, theoretical analysis of activation function properties, and application to more complex differential equation problems.

نویسندگان

Mahdi Zakyani

Aerospace Research Institute (ARI), Hava Faza Alley, Mahestan Street, Tehran, Iran, ۱۴۶۵۷۷۴۱۱۱