Network Data Envelopment Analysis and Uncertainty in Decision-Making: A Three-Stage Model Based on Liu's Uncertainty Theory
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 107
فایل این مقاله در 31 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_COAM-10-2_004
تاریخ نمایه سازی: 28 مهر 1404
چکیده مقاله:
Data Envelopment Analysis (DEA) is a well-established methodology for assessing the efficiency of decision-making units. In complex systems comprising multiple interconnected subsections, Network DEA provides a structured framework for efficiency evaluation. However, traditional DEA models rely on the assumption of deterministic data, which inadequately reflects the inherent uncertainty present in real-world scenarios. Traditional uncertainty-handling methods, such as fuzzy logic, stochastic models, and interval-based techniques, often fail when there is limited historical data and when expert opinions significantly influence the dataset. To address these limitations, this study introduces an uncertain network DEA model based on Liu’s uncertainty theory, facilitating a more accurate assessment of efficiency under conditions of data imprecision. The proposed model is designed for three interconnected subsections and is further extended into a generalized multi-stage framework, allowing it to adapt to increasingly complex systems. Its effectiveness and practical applicability are demonstrated through two numerical case studies in the banking industry, highlighting its capacity to support decision-making under uncertainty. The findings emphasize the model's potential to enhance efficiency evaluation methods, particularly in environments characterized by limited and uncertain data.
کلیدواژه ها:
نویسندگان
Jafar Pourmahmoud
Department of Applied Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
Ahad Abbasi
Department of Applied Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
Alireza Ghaffari-Hadigheh
Department of Applied Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :