Advanced hyperparameter optimization and adaptive synthetic sampling in machine learning for predictive maintenance of industrial machinery

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 48

فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_RIEJ-14-4_001

تاریخ نمایه سازی: 27 مهر 1404

چکیده مقاله:

Given the evolution of industrial machines, Predictive Maintenance (PdM) requires innovative solutions as the most advanced means of operating efficiency and cost-effectiveness enhancement. This research presents a comprehensive framework that integrates advanced hyperparameter optimization with Adaptive Synthetic Sampling (ADASYN) to solve the PdM problems in Machine Learning (ML) applications. In hyperparameter tuning, the Tree-structured Parzen Estimator (TPE) can apply an efficient method to dynamically select hyperparameters, while Optuna minimizes computational burden and enhances prediction accuracy. ADASYN addresses the problem of skewed datasets by improving the minority class representation in the training dataset and simultaneously facilitating better predictions. An extremely imbalanced industrial dataset is assessed using ۱۶ ML models, including encoder and ensemble models like LightGBM and Random Forest. The results are much better than boosting-based models, like LightGBM (۹۹.۲۶% accuracy and ۹۹.۲۶% F۱ score), highlighting their adaptability to complex datasets with variable feature interaction. Data balancing techniques and robust hyperparameter tuning significantly address most challenges posed by the noisy, imbalanced, and large-scale industrial data. This study introduces a novel unified framework integrating Optuna and ADASYN for PdM—an approach that has not been previously explored in existing literature. Previous research has used either optimization or resampling, but this work shows how their combination improves minority class sensitivity, reduces overfitting, and increases generalization in complex industrial settings. Meanwhile, the importance of advancing PdM methodologies is emphasized, and the possibility of a milestone in accurate, scalable, and interpretable scaling of ML models in dynamic industrial environments is investigated. Future research should advance predictive capability by domain-related feature engineering, real-time model testing, and hybrid methods. Intelligently combining predictive theory with field applicability, the proposed method can potentially bridge field applicability with the ability to deliver dependable, efficient industrial utility across sectors like manufacturing, transportation, and healthcare equipment maintenance.

نویسندگان

Amir Khani

Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran.

Ali Mohaghar

Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran.

Arman Rezasoltani

Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran.

Seyedeh Hosseinian

Department of Industrial Management, Faculty of Kish International Campus, University of Tehran, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ucar, A., Karakose, M., & Kırımça, N. (۲۰۲۴). Artificial intelligence ...
  • Kshirsagar, P., Dekate, A., Khardekar, A., & VIspute, S. (۲۰۲۴). ...
  • نمایش کامل مراجع