Leveraging deep feature learning for handwriting biometric authentication

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 66

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_RIEJ-13-1_007

تاریخ نمایه سازی: 27 مهر 1404

چکیده مقاله:

The authentication of writers through handwritten text stands as a biometric technique with considerable practical importance in the field of document forensics and literary history. The verification process involves a meticulous examination of the questioned handwriting in comparison to the genuine handwriting of a known writer, aiming to determine whether a shared authorship exists. In real-world scenarios, writer verification based on the handwritten text presents more challenges compared to signatures. Signatures typically consist of fixed designs chosen by signers, whereas textual content can vary and encompass a diverse set of letters, numbers, and punctuation marks. Moreover, verifying a writer based on limited handwritten texts, such as a single word, is recognized as one of authentication's open and challenging aspects. In this paper, we propose a Customized Siamese Convolutional Neural Network (CSCNN) for offline writer verification based on handwritten words. Additionally, a combined loss function is employed to achieve more accurate discrimination between the handwriting styles of different writers. The designed model is trained with pairs of images, each comprising one authentic and one questioned handwritten word. The effectiveness of the proposed model is substantiated through experimental results obtained from two well-known datasets in both English and Arabic, IAM and IFN/ENIT. These results underscore the efficiency and performance of our model across diverse linguistic contexts.

نویسندگان

Parvaneh Afzali

Department of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran.

Abdoreza Rezapour

Department of Computer Engineering, Astaneh Ashrafieh Branch, Islamic Azad University, Astaneh Ashrafieh, Iran.

Ahmad Rezaee Jordehi

Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :