Dynamics of Marburg virus in the presence of burial and cremation practices: A fractional approach

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 36

فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMCS-6-3_001

تاریخ نمایه سازی: 27 مهر 1404

چکیده مقاله:

Infectious diseases have long posed a significant threat to the smooth functioning of society. To mitigate their devastating impact, we have conducted a qualitative study of the Marburg virus (MARV) transmission using a novel fractional-order model. In developing this model, we account for cultural practices, specifically burial and cremation, which are crucial in shaping the spread of the virus. The model incorporates the Caputo fractional derivative to capture memory effects in disease transmission dynamics. We have established the existence and uniqueness of solutions, along with identifying the Marburg virus free equilibrium point. Additionally, we have derived the basic reproduction number and analyzed the conditions for local stability, using the basic reproduction number as a threshold parameter. We also established Ulam-Hyers and generalized Ulam-Hyers stability. To guide effective control strategies, we perform a sensitivity analysis to determine the most impactful factors in transmission, particularly those related to contact with infected individuals and deceased bodies. Numerical simulations in MATLAB validate the theoretical results and demonstrate that reducing contact during burial and cremation processes can significantly reduce virus transmission. This study offers a comprehensive framework for understanding MARV dynamics and provides valuable insights for public health interventions.

نویسندگان

Kaushal Soni

Department of Mathematics, National Institute of Technology Raipur, India

Shyamsunder Kumawat

Department of Mathematics, SRM University Delhi-NCR, Sonepat-۱۳۱۰۲۹, Haryana, India

Arvind Sinha

Department of Mathematics, National Institute of Technology Raipur, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Addai, E., Adeniji, A., Ngungu, M., Tawiah, G.K., Marinda, E., ...
  • Ambika and Sinha, A.K. (۲۰۲۵). Mathematical model of cancer treatment ...
  • Atangana, A. and Gómez-Aguilar, J.F. (۲۰۱۷). A new derivative with ...
  • Farman, M., Shehzad, A., Nisar, K.S., Hincal, E., and Akgul, ...
  • Jain, H. and Sinha, A.K. (۲۰۲۵). Modeling the efficacy of ...
  • Leamer, E. E. (۱۹۸۵). Sensitivity analyses would help. The American ...
  • Shyamsunder and Purohit, S. D. (۲۰۲۴). A novel study of ...
  • Dubey, R.S. and Mishra, M.N. and Goswami, P. (۲۰۲۲). Effect ...
  • Gellow, G.T. and Munganga, J.M.W. and Jafari, H. (۲۰۲۳). ANALYSIS ...
  • Sharma, S. and Dubey, R.S. and Chaudhary, A. (۲۰۲۴). Caputo ...
  • Ul Haq, I., Ali, N., Bariq, A., Akgül, A., Baleanu, ...
  • Ulam, S. M. (۲۰۰۴). Problems in modern mathematics. Courier Corporation. [۵۱] ...
  • نمایش کامل مراجع