“Smart and Energy-Self-Sufficient Cities: Urban Planning Pathways for Climate-Resilient Futures in the San Francisco Bay Area,,
فایل این در 22 صفحه با فرمت PDF قابل دریافت می باشد
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
چکیده :
The increasing urbanization and energy demand in modern cities have highlighted the critical need for sustainable and energy-efficient urban planning strategies. This study examines the potential of smart homes and energy self-sufficient buildings as key components in developing climate-resilient and energy-independent urban environments, with a particular focus on the San Francisco Bay Area. The research aims to identify effective urban planning pathways that integrate renewable energy technologies, smart infrastructure, and community-based energy management systems to reduce dependence on conventional energy sources. Using a mixed-methods approach, including spatial analysis, energy modeling, and case study evaluation, the study assesses current smart city initiatives, identifies challenges and opportunities, and proposes strategic frameworks for implementing energy self-sufficiency at neighborhood and city scales. The findings indicate that integrating smart technologies into urban planning significantly enhances energy resilience, reduces greenhouse gas emissions, and promotes sustainable urban growth. The study contributes to the growing body of knowledge on smart cities by providing evidence-based recommendations for policymakers, urban planners, and researchers interested in developing energy-resilient urban communities. The results also offer practical implications for cities worldwide seeking to balance urban growth, energy sustainability, and climate resilience, highlighting the role of geographically informed planning in achieving energy self-sufficiency.
کلیدواژه ها:
Keywords: Smart Cities ، Energy Self-Sufficiency ، Climate Resilience ، Renewable Energy ، San Francisco Bay Area
نویسندگان
محمد سهرابی
PH.D in Urban Planing Geography
مراجع و منابع این :
لیست زیر مراجع و منابع استفاده شده در این را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود لینک شده اند :