Bayesian estimation of heteroscedastic skew-normal error regression model
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 5
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JSMTA-5-2_009
تاریخ نمایه سازی: 19 مهر 1404
چکیده مقاله:
In statistics, errors are inherent in data and models, particularly heteroscedasticity and skew-normal error structures. These errors were simultaneously generated and infused into the data, leading to uncertainty in parameter estimation. The statistician uses statistical knowledge to elicit information and guide decision-making. Both classical and Bayesian restricted Stein-rule least squares were compared when the data were contaminated with the aforementioned errors. This study proposed an innovative Bayesian generalized restricted Stein-rule least squares method with heteroscedastic skew-normal errors, which was ultimately found to be more efficient compared to non-Bayesian restricted Stein-rule least square estimators. The study observed excellent performance of the Bayesian frameworks, including the Bayes estimate and posterior mean, in comparison to the classical restricted Stein-rule least squares estimators. Therefore, the study recommends Bayesian generalized restricted Stein-rule least squares to analysts and researchers who may encounter such errors in their data.
کلیدواژه ها:
نویسندگان
Isiaka Oloyede
Department of Statistics, University of Ilorin, Nigeria
Alfred Abiodun
Department of Statistics, University of Ilorin, Nigeria