Predicting Maximum Process Temperature in Cortical Bone Milling: An XGBoost Approach with Sensitivity Insights

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 111

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMF-12-3_002

تاریخ نمایه سازی: 15 مهر 1404

چکیده مقاله:

Bone milling, a crucial biomechanical process in medical engineering, finds applications in dentistry, orthopedic surgery, and bone-related treatments. The utilization of computer numerical control (CNC) surgical mills has significantly enhanced this process, but it comes with challenges such as elevated temperatures that induce thermal necrosis in bone tissue. This study examines key inputs, including tool diameter, feed rate, rotational speed, and cutting depth, conducting a detailed experiment to predict maximum process temperature using the XGBoost machine learning algorithm. The XGBoost model consistently demonstrated exceptional predictive accuracy, yielding high determination coefficients of ۰.۹۹ in training and ۰.۹۴ in testing. Accurate predictions were evident through close alignment between model-predicted and actual values, with mean absolute percentage error (MAPE) values of ۰.۳۳% and ۳.۳۸% for training and testing, respectively. Rotational speed emerged as a critical factor, indicating a key point where temperature trends shift. Higher speeds are correlated with lower temperatures due to enhanced chip removal and reduced bone heat conductivity. Elevated feed rates were associated with increased bone temperature, emphasizing the intricate interplay between frictional forces and heat production. Additionally, often-overlooked factors like cutting depth and tool diameter substantially influenced process temperature, impacting surgery recovery times. Sobol sensitivity analysis identified cutting depth, rotational speed, tool diameter, and feed rate as primary factors influencing maximum process temperature fluctuations, with effectiveness percentages of ۴۶.۷%, ۳۶%, ۱۳.۲%, and ۴.۱%, respectively. This comprehensive analysis sheds light on optimizing bone milling processes and mitigating thermal risks in medical applications.

نویسندگان

V. Tahmasbi

Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

M. Qasemi

Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

A.H. Rabiee

Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Dahotre, N. B., & Joshi, S. (۲۰۱۶). Machining of bone and ...
  • Hernandez Montero, E., Caballero, E., & García Ibanez, L. (۲۰۲۰). ...
  • Gallo, J., Goodman, S. B., Konttinen, Y. T., Wimmer, M. ...
  • Bonfield, W., & Li, C. (۱۹۶۸). The temperature dependence of ...
  • Sugita, N., Osa, T., & Mitsuishi, M. (۲۰۰۹). Analysis and ...
  • Talebi Ghadikolaee, H., Moslemi Naeini, H., Rabiee, A. H., Zeinolabedin Beygi, ...
  • نمایش کامل مراجع