Detection of Multiple Sclerosis Lesions in MR Images Based on Convolutional Neural Networks
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 25
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_FRAI-1-1_002
تاریخ نمایه سازی: 13 مهر 1404
چکیده مقاله:
Multiple Sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system and can lead to neurological disabilities. Early and accurate diagnosis plays a key role in managing its long-term effects. This study proposes a novel model based on convolutional neural networks (CNN) for identifying MS lesions in MRI images.This study used an MRI dataset from ۶۰ individuals divided into training, validation, and test sets. The preprocessing included removing initial slices and applying data augmentation (random rotations) to increase the number of training images to ۱۰۸۰. A customized CNN architecture was designed to learn the features related to MS lesions. The model's performance was evaluated using accuracy, sensitivity, and specificity metrics on validation and test data. The CNN performance was also compared with two machine learning algorithms: decision tree and support vector machine.The proposed CNN model showed promising performance in detecting MS lesions. It achieved an accuracy of ۹۹% during training and ۹۶.۴۴% during validation, demonstrating its ability to generalize to new data. The test accuracy was ۹۲.۶%, with sensitivity and specificity reported as ۸۴% and ۹۵%, respectively. Compared to other methods, the CNN outperformed the support vector machine (accuracy ۸۵%, sensitivity ۸۲.۶۱%, specificity ۹۸%) and the decision tree (accuracy ۹۸%, sensitivity ۹۵%, specificity ۸۳.۷۲%), highlighting its high capability in detecting MS lesions.This research successfully demonstrates the capability of convolutional neural networks (CNN) in the accurate and automated detection of MS lesions in MRI images, achieving a test accuracy of ۹۲.۶%. The superior performance of CNN compared to traditional machine learning methods offers a promising approach for improving diagnostic accuracy, reducing reliance on human factors, and accelerating therapeutic interventions. The development of such tools can assist clinical specialists, enhance diagnostic efficiency, and facilitate better patient management. In the future, it is recommended to focus on improving CNN architecture, utilizing broader datasets, and exploring its application in different types of MS and disease progression monitoring.
کلیدواژه ها:
نویسندگان
Mehrdad Hashemi Kamangar
Department of Electrical and Electronics Engineering, Faculty of Engineering, Shomal University, Amol, Iran
Marzieh Rajabzadeh
Department of Electrical and Electronics Engineering, Faculty of Engineering, Shomal University, Amol, Iran
Amirhossein Jalalzadeh
Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :