Detection of Multiple Sclerosis Lesions in MR Images Based on Convolutional Neural Networks

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 25

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_FRAI-1-1_002

تاریخ نمایه سازی: 13 مهر 1404

چکیده مقاله:

Multiple Sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system and can lead to neurological disabilities. Early and accurate diagnosis plays a key role in managing its long-term effects. This study proposes a novel model based on convolutional neural networks (CNN) for identifying MS lesions in MRI images.This study used an MRI dataset from ۶۰ individuals divided into training, validation, and test sets. The preprocessing included removing initial slices and applying data augmentation (random rotations) to increase the number of training images to ۱۰۸۰. A customized CNN architecture was designed to learn the features related to MS lesions. The model's performance was evaluated using accuracy, sensitivity, and specificity metrics on validation and test data. The CNN performance was also compared with two machine learning algorithms: decision tree and support vector machine.The proposed CNN model showed promising performance in detecting MS lesions. It achieved an accuracy of ۹۹% during training and ۹۶.۴۴% during validation, demonstrating its ability to generalize to new data. The test accuracy was ۹۲.۶%, with sensitivity and specificity reported as ۸۴% and ۹۵%, respectively. Compared to other methods, the CNN outperformed the support vector machine (accuracy ۸۵%, sensitivity ۸۲.۶۱%, specificity ۹۸%) and the decision tree (accuracy ۹۸%, sensitivity ۹۵%, specificity ۸۳.۷۲%), highlighting its high capability in detecting MS lesions.This research successfully demonstrates the capability of convolutional neural networks (CNN) in the accurate and automated detection of MS lesions in MRI images, achieving a test accuracy of ۹۲.۶%. The superior performance of CNN compared to traditional machine learning methods offers a promising approach for improving diagnostic accuracy, reducing reliance on human factors, and accelerating therapeutic interventions. The development of such tools can assist clinical specialists, enhance diagnostic efficiency, and facilitate better patient management. In the future, it is recommended to focus on improving CNN architecture, utilizing broader datasets, and exploring its application in different types of MS and disease progression monitoring.

نویسندگان

Mehrdad Hashemi Kamangar

Department of Electrical and Electronics Engineering, Faculty of Engineering, Shomal University, Amol, Iran

Marzieh Rajabzadeh

Department of Electrical and Electronics Engineering, Faculty of Engineering, Shomal University, Amol, Iran

Amirhossein Jalalzadeh

Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Sedaghat, H. Jang, J. S. Athertya, M. Groezinger, J. Corey-Bloom, ...
  • Dobson and G. Giovannoni, "Multiple sclerosis–a review," European journal of ...
  • Rodríguez Murúa, M. F. Farez, and F. J. Quintana, "The ...
  • Ochoa-Morales et al., "Quality of life in patients with multiple ...
  • C. Hemond and R. Bakshi, "Magnetic resonance imaging in multiple ...
  • H. Jalalzadeh, A. Shalbaf, and A. Maghsoudi, "Compensation of brain ...
  • Krichen, "Convolutional neural networks: A survey," Computers, vol. ۱۲, no. ...
  • F. Ahmed et al., "Deep learning modelling techniques: current progress, ...
  • H. Jalalzadeh, H. Ebrahimi, and M. Jahangiri Moghadam, "Classification of ...
  • Coll et al., "Deciphering multiple sclerosis disability with deep learning ...
  • Cruciani et al., "Interpretable deep learning as a means for ...
  • Filippi et al., "Present and future of the diagnostic work-up ...
  • Moazami, A. Lefevre-Utile, C. Papaloukas, and V. Soumelis, "Machine learning ...
  • Iwamura et al., "Thin-slice two-dimensional T۲- weighted imaging with deep ...
  • Mani et al., "Applying deep learning to accelerated clinical brain ...
  • Fenneteau, P. Bourdon, D. Helbert, C. Fernandez- Maloigne, C. Habas, ...
  • Ortiz et al., "Diagnosis of multiple sclerosis using optical coherence ...
  • Pandey, D., Niwaria, K., & Chourasia, B. (۲۰۱۹). Machine learning ...
  • Habib and S. Qureshi, "Optimization and acceleration of convolutional neural ...
  • H. Jalalzadeh, S. S. Talebi, and M. H. Kamangar, "Two-step ...
  • Purwono, A. Ma'arif, W. Rahmaniar, H. I. K. Fathurrahman, A. ...
  • نمایش کامل مراجع