MDEU-A۲C: A Mobility, Deadline, Energy and Utilization Aware Multi-Agent A۲C Scheduling Approach to Support Fog and Edge Computing in IoT Applications

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 35

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_FRAI-1-1_006

تاریخ نمایه سازی: 13 مهر 1404

چکیده مقاله:

Mobile Edge Computing reduces latency and response time by bringing computational resources closer to end-user. However, user mobility poses a significant challenge, as users continuously move between coverage areas of different edge nodes with limited range. This dynamic environment demands efficient scheduling mechanisms that can adapt to user movement while meeting application deadlines and optimizing edge resource utilization. This paper proposes an approach for scheduling based on Deep Reinforcement Learning, specifically using an Advantage Actor-Critic architecture within a Fog and Edge computing framework for IoT applications. The method enables distributed decision-making by deploying actor agents at edge nodes and a centralized critic at the fog node, facilitating continuous adaptation through system-wide feedback. User mobility is addressed using location prediction via RNN models embedded at each edge node, allowing proactive and informed offloading decisions. Experimental results demonstrate the proposed approach significantly improves task completion rate by ۵۰%, failure rate by ۲۶%, and response latency by ۶۰%, while also adapting well to dynamic environments, outperforming state-of-the-art methods in real-world-inspired scenarios.

کلیدواژه ها:

Mobile Edge Computing (MEC) ، Fog and Edge Computing (FEC) ، Multi-Agent Reinforcement Learning ، Advantage Actor-Critic (A۲C) ، Decentralized Scheduling

نویسندگان

Armin Mohammadi Ghaleh

K. N. Toosi University of Technology, Tehran, Iran

Sayed Gholam Hassan Tabatabaei

Department of Electrical and Computer Engineering, Malek-e-Ashtar University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • P. Li, Z. Xiao, X. Wang, K. Huang, Y. Huang ...
  • J. B. D. da Costa, A. M. de Souza, R. ...
  • Y. Fan, J. Ge, S. Zhang, J. Wu and B. ...
  • X. He, C. You and T. Q. S. Quek, “Age-Based ...
  • J. Lu, J. Yang, S. Li, Y. Li, W. Jiang ...
  • L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan ...
  • Z. Cao, X. Deng, S. Yue, P. Jiang, J. Ren ...
  • D. Misra, “Mish: A Self Regularized Non-Monotonic Activation Function,” Arxiv, ...
  • Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, ...
  • "Docker," Docker, [Online]. Available on: www.docker.com ...
  • “Mosquitto,” Eclipse, [Online]. Available on: www.mosquitto.or ...
  • “Python,” Python, [Online]. Available on: www.python.org ...
  • J. Kim and K. Lee, "Function Bench : A Suite ...
  • “Node-Red,” IBM, [Online]. Available on: www.nodered.org ...
  • A. Biswas and H.-C. Wang, “Autonomous Vehicles Enabled by the ...
  • S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang ...
  • A. Hazra , P. Rana , M. Adhikari and T. ...
  • S. N. Srirama, “Distributed Edge Analytics in Edge-Fog-Cloud Continuum,” Arxiv, ...
  • W. Qin , H. Chen , L. Wang , Y. ...
  • M. Ferens, D. Hortelano, I. de Miguel, R. J. Durán ...
  • N. Yang, J. Wen, M. Zhang and M. Tang, “Multi-objective ...
  • B. Xie and H. Cui, “Deep reinforcement learning-based dynamical task ...
  • نمایش کامل مراجع