A Network Intrusion Detection System Based on Deep Learning Models in IoT Systems
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 36
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_FRAI-1-2_001
تاریخ نمایه سازی: 13 مهر 1404
چکیده مقاله:
The Internet of Things (IoT) has a vital role in the lives of people today. However, as the use of IoT devices becomes more widespread, there is a growing concern about security threats, like botnet attacks. Therefore, the use of inclusive solutions is required. Intrusion Detection Systems (IDS) can detect and mitigate attacks on IoT devices by analyzing network traffic and device behavior. This paper proposes an IDS that uses Deep Learning (DL) techniques. It is based on an ensemble learning model that employs diversity and F۱-score as a performance metric to select the best transfer learning models. It also proposes ۲۰ individual and hybrid DL models, including Convolution Neural Networks (CNN), Recurrent Neural Networks (RNNs), and Deep Neural Networks (DNN), to detect and classify regular and botnet attack classes. The proposed IDS engages a feature engineering method to reduce unnecessary computation. The Bot-IoT dataset used in this paper contained DDoS, DoS, Reconnaissance, and theft attack labels. The proposed IDS was compared with existing methods using the Bot-IoT dataset. Experimental results disclose a high performance of the proposed model for detecting and classifying various attack and regular labels.
کلیدواژه ها:
نویسندگان
Payam Mahmoudi-Nasr
Department of Computer Engineering, University of Mazandaran, Mazandaran, Iran.
Mahdi Mousavand
Department of Computer Engineering, University of Mazandaran, Mazandaran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :