An Application of Improved Neural Networks to Solve Differetial Equation based Z-Process

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 20

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_FRAI-1-2_002

تاریخ نمایه سازی: 13 مهر 1404

چکیده مقاله:

In this work, we utilize a modified neural network to introduce a new method for solving the differential equation with Z-number initial value estimation. The proposed method consists of a function evaluating Z-numbers. The generalized neural network consists of three layers. The first layer contains input, weights of the first layer and bias of the neural network. So that, the number of weights (Corresponding to the number of equations of the main problem) corresponds to the number of inputs. The second layer contains neurons and nonlinear transmission functions. The third layer, which is the same output layer, consists of an output, linear transmission functions and weights of the last layer. Note that an improved neural network inputs are real based on which its weights and outputs are Z-valuation. In this matter, in order to train the improved neural network, we consider the objective function of the neural network to be the same as the sum squared error function. We minimize the target function to obtain the weights of the neural network using an optimization technique. Finally, the value obtained from the proposed method converges to the value of the original solution. In order to prove that the proposed method is a suitable and practical method for the exact solution approximation, we present two numerical examples as well.

نویسندگان

Somayeh Ezadi

Department of Mathematics, N.T.C., Islamic Azad University, Tehran, Iran,

Mohammad Ali Fariborzi Araghi

۲Department of Mathematics, C.T.C, Islamic Azad University, Tehran, Iran

Masoud Baghfalaki

۳Department of Mathematics, Ker. C., Islamic Azad University, Kermanshah, Iran

Nader Biranvand

Department of Mathematics, Faculty of Basic Sciences Imam Ali University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Allahviranloo, T., Ahmady, N., Ahmady, E.: Numerical solution of fuzzy ...
  • Allahviranloo,T and Ezadi, S., Z-Advanced numbers processes, Information Sciences, ۴۸۰, ...
  • Barzegar Kelishami, H., Fariborzi Araghi, M. A., Amirfakhrian, M.: Applying ...
  • Ezadi, S., Parandin, N., GHomashi, A.: Numerical Solution of Fuzzy ...
  • Ezadi, S., Allahviranloo, T.: New multi-layer method for Z-number ranking ...
  • Ezadi, S., Allahviranloo, T.: Numerical solution of linear regression based ...
  • Ezadi, S., Allahviranloo, T.: Two new methods for ranking of ...
  • Hornick, K., Stinchcombe, M.: White H. Multilayer feedforward networks are ...
  • Luenberger, D.G.: Linear and Nonlinear Programming, second ed., Addison Wesley, ...
  • Lee, H., kang, I.S.: Neural algorithms for solving differential equations, ...
  • Liu, C., and Nocedal, J.: On the limited memory BFGS ...
  • Mohamad, Shaharani, D. S. A. and Kamis, N. H. A.: ...
  • Pirmuhammadi, S., Allahviranloo, T., Keshavarz, M.: The parametric form of ...
  • Qalehe, L. Afshar Kermani, M., Allahviranloo, T.: Solving First-Order Differential ...
  • Seikkala, S.: On the fuzzy initial value problem, Fuzzy Sets ...
  • Yager, R.R.: On Z-Valuations Using Zadeh’s Z-Numbers, International journal of ...
  • Zadeh, L A.: A Note on Z-numbers, Information Sciences ۱۸۱, ...
  • J. B. Zajia, J. A. Morente-Molinera, I. A. Díaz, Decision ...
  • Alam, Nik Muhammad Farhan Hakim Nik Badrul, et al. "The ...
  • Banerjee, Romi, Sankar K. Pal, and Jayanta Kumar Pal. "A ...
  • نمایش کامل مراجع