Smart Convergence System for Traffic and Urban Parking Management

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 84

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CCUR01_440

تاریخ نمایه سازی: 13 مهر 1404

چکیده مقاله:

This paper presents a Smart Convergence System for Traffic and Urban Parking Management, integrating AI, IoT, and cloud computing to address urban mobility challenges. As cities grapple with congestion, inefficient parking, and environmental impacts, the system offers a unified solution by: AI-driven traffic control that dynamically adjusts signals using real-time data; Smart parking management with IoT sensors guiding drivers to available spots via a mobile app; Sustainable design, reducing emissions by optimizing traffic flow and parking search time. Case studies in metropolitan, airport, and mall settings demonstrate ۲۰-۳۰% improvements in congestion and parking utilization. The system's scalable architecture supports future integration with autonomous vehicles and smart grids. Challenges like infrastructure costs and data privacy are discussed, alongside solutions such as encryption and modular deployment. By merging traffic and parking management into a single, adaptive platform, this system provides a model for sustainable, user-centric urban mobility.

نویسندگان

Seyed Javad Roudehchi Tabrizi

Istanbul University

Samar Goldouz

Azad university