AI-Powered Predictive Modeling: Revolutionizing Construction Risk
محل انتشار: اولین کنفرانس ملی پیشرفت شهرسازی، معماری و عمران
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 6
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CCUR01_084
تاریخ نمایه سازی: 13 مهر 1404
چکیده مقاله:
With the global construction market expected to expand substantially in the coming years and AI playing a crucial role in boosting productivity, this study aims to provide insights into the potential benefits of using AI for risk assessment in construction projects. Risk assessment is a critical and vital aspect of building project management. Effective risk identification, evaluation, and management are necessary to prevent time and cost overruns and to ensure project success. Existing risk assessment methods often fall short in understanding the complex and interdependent nature of risks in construction projects, especially under significant uncertainty. AI-based techniques provide innovative solutions by integrating various methods such as neural networks, genetic algorithms, fuzzy logic, and object-oriented approaches. These techniques often address risk interdependencies and significantly enhance the accuracy of risk assessments. In this article, we generate a synthetic dataset, train a Random Forest classifier to predict risks based on various project features, and evaluate the model's performance for accurate risk assessment in construction projects. The results demonstrate the effectiveness of employing AI, particularly Random Forest classifiers, for precise risk assessment in construction projects.
کلیدواژه ها:
نویسندگان
Milad Torabi Anaraki
Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran