Intelligent traffic signal scheduling using artificial intelligence algorithms based on real-time traffic flows

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 9

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CAND-4-3_003

تاریخ نمایه سازی: 8 مهر 1404

چکیده مقاله:

Intelligent traffic management has become a critical research focus due to the rapid increase in urban populations and vehicle ownership, which has led to severe congestion and safety concerns worldwide. Traditional fixed-time traffic signal systems fail to adapt to dynamic traffic flows, while actuated-time methods, although more responsive, are still limited in handling real-time complexity. Recent advances in Artificial Intelligence (AI) and deep learning, particularly object detection algorithms such as YOLOv۸, provide new opportunities to enhance traffic signal scheduling through real-time vehicle recognition and flow estimation. In this paper, we propose an intelligent traffic signal scheduling model based on YOLOv۸ for vehicle detection, combined with a Multi-Layer Perceptron (MLP) neural network for computing optimal green-phase durations. The system accounts for real-time vehicle counts, lane occupancy ratios, and signal history, while embedding safety and operational constraints such as minimum/maximum green times, fixed yellow phases, and red-time derivation. Moreover, emergency vehicles are given higher priority weights to minimize their clearance time. Simulation results demonstrate that the proposed approach achieves higher detection accuracy (mAP@۰.۵ of ۵۰.۲%) compared to Faster R-CNN and YOLOv۷ baselines, and reduces average vehicle delay by up to ۲۳% compared to fixed-time control. Emergency vehicle clearance times are also reduced by approximately ۳۵%, confirming the robustness and applicability of the method under varying traffic volumes and environmental conditions.

نویسندگان

Mansoureh Naderipour

Department of Industrial Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

Amir Hossein Amiri

Department of Industrial Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Litman, T. (۲۰۲۱). Congestion costs, evaluation and reduction strategies. https://www.vtpi.org/cong_relief.pdf[۲] ...
  • نمایش کامل مراجع