Accuracy Improvement of Real-Time Driver Drowsiness Detection Using Transformer Model

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 14

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-13-4_007

تاریخ نمایه سازی: 5 مهر 1404

چکیده مقاله:

Drowsiness remains a significant challenge for drivers, often resulting from extended working hours, inadequate sleep, and accumulated fatigue. This condition not only impairs reaction time and decision-making but also contributes to a substantial number of road accidents globally. Therefore, reliable and timely detection of driver drowsiness is essential for enhancing transportation safety and reducing the risk of traffic-related fatalities. With the rapid progress in deep learning, numerous models have been developed to detect driver drowsiness with high accuracy. However, the real-world performance of these models can deteriorate under varying environmental conditions, such as changes in cabin illumination, facial occlusions, and dynamic shadows on the driver’s face. To address these limitations, this paper proposes a robust, real-time driver drowsiness detection model that leverages facial behavioral features and a Transformer-based neural network architecture. The Mediapipe framework is utilized to extract a comprehensive set of facial keypoints, capturing subtle facial movements and expressions indicative of drowsiness. These keypoints are then encoded to form feature vectors that serve as input to the Transformer network, enabling effective temporal modeling of facial dynamics. The proposed model is trained and evaluated on the National Tsing Hua University (NTHU) Driver Drowsiness Detection dataset, achieving a state-of-the-art accuracy of ۹۹.۷۱%, demonstrating its potential for deployment in real-world in-vehicle systems.

نویسندگان

Havva Askari

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.

Razieh Rastgoo

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.

Kourosh Kiani

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S.A. El-Nabi, W. El-Shafai, ES.M. El-Rabaie, et al., “Machine learning ...
  • J. Flores-Monroy, M. Nakano-Miyatake, G. Sanchez-Perez, and H. Perez-Meana, “Visual-based ...
  • P. Mate, N. Apte, M. Parate, et al., “Detection of ...
  • A. Dosovitskiy et al., “An image is worth ۱۶x۱۶ words: ...
  • E. Magán, M. P. Sesmero, J. M. Alonso-Weber, and A. ...
  • R. Rastgoo, K. Kiani, S. Escalera, “Diffusion-Based Continuous Sign Language ...
  • K. Kiani, R. Rastgoo, A. Chaji, S. Escalera, “Image Inpainting ...
  • N. Esfandiari, K. Kiani, R. Rastgoo, “Development of a Persian ...
  • N. Esfandiari, K. Kiani, R. Rastgoo, “Transformer-based Generative Chatbot Using ...
  • A.M. Ahmadi, K. Kiani, R. Rastgoo, “A Transformer-based model for ...
  • F. Bagherzadeh, R. Rastgoo, “Deepfake image detection using a deep ...
  • M. Talebian, K. Kiani, R. Rastgoo, “A Deep Learning-based Model ...
  • H. Zaferani, K. Kiani, R. Rastgoo, “Real-time face verification on ...
  • S. Zarbafi, K. Kiani, R. Rastgoo, “Spoken Persian digits recognition ...
  • N. Esfandiari, K. Kiani, R. Rastgoo, “A conditional generative chatbot ...
  • N. Majidi, K. Kiani, R. Rastgoo, “A deep model for ...
  • R. Rastgoo, K. Kiani, “Face recognition using fine-tuning of Deep ...
  • R. Rastgoo, V. Sattari-Naeini, “Gsomcr: Multi-constraint genetic-optimized qos-aware routing protocol ...
  • R. Rastgoo, V. Sattari-Naeini, “Tuning parameters of the QoS-aware routing ...
  • R. Rastgoo, V. Sattari Naeini, “A neurofuzzy QoS-aware routing protocol ...
  • F. Alinezhad, K. Kiani, R. Rastgoo, “A Deep Learning-based Model ...
  • S. Shekarizadeh, R. Rastgoo, S. Al-Kuwari, M. Sabokrou, “Deep-disaster: unsupervised ...
  • R. Rastgoo, K. Kiani, S. Escalera, “ZS-GR: zero-shot gesture recognition ...
  • R. Rastgoo, K. Kiani, S. Escalera, “A deep co-attentive hand-based ...
  • A. Pourreza, K. Kiani, “A partial-duplicate image retrieval method using ...
  • A. Fakhari, K. Kiani, “A new restricted boltzmann machine training ...
  • A. Alsayat, “Improving Sentiment Analysis for Social Media Applications Using ...
  • A. Mukhamadiyev, L. Khujayarov, O. Djuraev, J. Cho, “Automatic Speech ...
  • T. D. Pereira et al., “SLEAP: A deep learning system ...
  • J. Cui et al., “A compact and interpretable convolutional neural ...
  • M. H. Z. M. Fodli, F. H. K. Zaman, N. ...
  • A. Quddus, A. S. Zandi, L. Prest, and F. J. ...
  • S. Anber, W. Alsaggaf, and W. Shalash, “A Hybrid Driver ...
  • I. Jahan et al., “۴D: A Real-Time Driver Drowsiness Detector ...
  • A. Vaswani et al., “Attention is all you need,” Adv. ...
  • Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, ...
  • R. Yogesh, V. Ritheesh, S. Reddy, and R. G. Rajan, ...
  • J. Bai et al., “Two-stream spatial-temporal graph convolutional networks for ...
  • M. Omidyeganeh et al., “YawDD: Yawning Detection Dataset.” IEEE Transactions ...
  • Ch.H. Weng, Y.H. Lai, Sh.H. Lai, “Driver Drowsiness Detection via ...
  • A. Aytekin and V. Mençik, “Detection of Driver Dynamics with ...
  • H. Ja, Z. Xiao, and P. Ji, “Real-time fatigue driving ...
  • G. S. Krishna, K. Supriya, and J. Vardhan, “Vision Transformers ...
  • R. Ghoddoosian, M. Galib, and V. Athitsos, “A realistic dataset ...
  • C. Lugaresi et al., “Mediapipe: A framework for building perception ...
  • R. Jabbar, K. Al-Khalifa, M. Kharbeche, W. Alhajyaseen, M. Jafari, ...
  • نمایش کامل مراجع