Accuracy Improvement of Real-Time Driver Drowsiness Detection Using Transformer Model
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 13، شماره: 4
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 14
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-13-4_007
تاریخ نمایه سازی: 5 مهر 1404
چکیده مقاله:
Drowsiness remains a significant challenge for drivers, often resulting from extended working hours, inadequate sleep, and accumulated fatigue. This condition not only impairs reaction time and decision-making but also contributes to a substantial number of road accidents globally. Therefore, reliable and timely detection of driver drowsiness is essential for enhancing transportation safety and reducing the risk of traffic-related fatalities. With the rapid progress in deep learning, numerous models have been developed to detect driver drowsiness with high accuracy. However, the real-world performance of these models can deteriorate under varying environmental conditions, such as changes in cabin illumination, facial occlusions, and dynamic shadows on the driver’s face. To address these limitations, this paper proposes a robust, real-time driver drowsiness detection model that leverages facial behavioral features and a Transformer-based neural network architecture. The Mediapipe framework is utilized to extract a comprehensive set of facial keypoints, capturing subtle facial movements and expressions indicative of drowsiness. These keypoints are then encoded to form feature vectors that serve as input to the Transformer network, enabling effective temporal modeling of facial dynamics. The proposed model is trained and evaluated on the National Tsing Hua University (NTHU) Driver Drowsiness Detection dataset, achieving a state-of-the-art accuracy of ۹۹.۷۱%, demonstrating its potential for deployment in real-world in-vehicle systems.
کلیدواژه ها:
نویسندگان
Havva Askari
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.
Razieh Rastgoo
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.
Kourosh Kiani
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :