Adaptive Portfolio Optimization with Multi-Agent Deep Reinforcement Learning and Short-Term Performance Analysis
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 70
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ITRC-17-3_006
تاریخ نمایه سازی: 30 شهریور 1404
چکیده مقاله:
This research presents a novel portfolio optimization framework using deep reinforcement learning (DRL).
Traditional methods rely on static models or single-agent strategies, which struggle with market dynamics. We propose
a dynamic system to address this by selecting the best-performing DRL agent based on recent market conditions. The
framework evaluates five DRL agents, A۲C, SAC, TD۳, DDPG, and PPO, allocating portfolio weights based on short-
term performance. A selection mechanism identifies the top agent using cumulative returns over the prior ten days,
leveraging multiple agents' strengths. This adaptive approach embraces the philosophy that no single strategy
consistently outperforms in all market conditions, making flexibility and continuous learning essential for robust
portfolio management. Backtesting on Dow Jones data shows our method enhances cumulative returns and risk-
adjusted performance, achieving an ۱۱.۴۳% average annual return, ۳۸.۲۹% cumulative returns, and a ۰.۸۳۲ Sharpe
ratio, outperforming individual DRL agents.
کلیدواژه ها:
نویسندگان
Shahin Sharbaf Movassaghpour
Department of Computer Engineering, Islamic Azad University, Tabriz Branch Tabriz, Iran
Masoud Kargar
Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Ali Bayani
Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Alireza Assadzadeh
Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Ali Khakzadi
Department of Computer Engineering Islamic Azad University, Tabriz Branch Tabriz, Iran ali.khakzadi@iau.ir