Adaptive Portfolio Optimization with Multi-Agent Deep Reinforcement Learning and Short-Term Performance Analysis

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 70

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ITRC-17-3_006

تاریخ نمایه سازی: 30 شهریور 1404

چکیده مقاله:

This research presents a novel portfolio optimization framework using deep reinforcement learning (DRL). Traditional methods rely on static models or single-agent strategies, which struggle with market dynamics. We propose a dynamic system to address this by selecting the best-performing DRL agent based on recent market conditions. The framework evaluates five DRL agents, A۲C, SAC, TD۳, DDPG, and PPO, allocating portfolio weights based on short- term performance. A selection mechanism identifies the top agent using cumulative returns over the prior ten days, leveraging multiple agents' strengths. This adaptive approach embraces the philosophy that no single strategy consistently outperforms in all market conditions, making flexibility and continuous learning essential for robust portfolio management. Backtesting on Dow Jones data shows our method enhances cumulative returns and risk- adjusted performance, achieving an ۱۱.۴۳% average annual return, ۳۸.۲۹% cumulative returns, and a ۰.۸۳۲ Sharpe ratio, outperforming individual DRL agents.

نویسندگان

Shahin Sharbaf Movassaghpour

Department of Computer Engineering, Islamic Azad University, Tabriz Branch Tabriz, Iran

Masoud Kargar

Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Ali Bayani

Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Alireza Assadzadeh

Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Ali Khakzadi

Department of Computer Engineering Islamic Azad University, Tabriz Branch Tabriz, Iran ali.khakzadi@iau.ir