Examination of Machine Learning Algorithms in Diagnosis of Neurological and Mental Diseases

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 26

فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-39-2_014

تاریخ نمایه سازی: 26 شهریور 1404

چکیده مقاله:

Mental health conditions, including anxiety, represent major challenges on a global scale. These illnesses encompass a range of conditions that disrupt thought patterns and behavior, often leading to significant discomfort or disability for those affected. the field of data mining has gained prominence in medicine, offering innovative tools to uncover hidden insights and enhance disease classification, particularly in mental health. This analytical method is essential for uncovering valuable patterns in large datasets, enabling better understanding and diagnosis of complex disorders. The purpose of this article is to investigate neurological and mental diseases using machine learning algorithms and to identify the most used algorithm in each disease. The method used in this article is machine learning algorithms and it is the most widely used and most important algorithm in each of the neurological and mental diseases. The results show that the SVM algorithm emerged as the most frequently employed method, followed closely by random forest and decision tree algorithms. These techniques demonstrate the growing importance of machine learning in enhancing diagnostic capabilities and deepening our understanding of mental health disorders. This research focuses on utilizing machine learning techniques to assist in diagnosing neurological and mental health conditions. By analyzing studies conducted between ۲۰۰۵ and ۲۰۲۴, the review evaluates conditions such as schizophrenia, depression, bipolar disorder and Alzheimer. A total of ۵۰ studies were selected based on their relevance to machine learning applications in this domain.

نویسندگان

H. Hamidi

Department of Industrial Engineering, Information Technology Group, K. N. Toosi University of Technology, Tehran, Iran

S. A. H. Pourmazar

Department of Industrial Engineering, Information Technology Group, K. N. Toosi University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Dooshima MP, Chidozie EN, Ademola BJ, Sekoni OO, Adebayo IP. ...
  • Alonso SG, de La Torre-Díez I, Hamrioui S, López-Coronado M, ...
  • Sarno R, Ghozali I. Multi-class multi-level classification of mental health ...
  • Iyortsuun NK, Kim S-H, Jhon M, Yang H-J, Pant S, ...
  • Jiang F, Jiang Y, Zhi H, Dong Y, Li H, ...
  • Pirooznia M, Seifuddin F, Judy J, Mahon PB, Potash JB, ...
  • Tomar D, Agarwal S. A survey on Data Mining approaches ...
  • Hamedani P, Sadr S, Shoulaei A. Independent fuzzy logic control ...
  • Joseph SR, Hlomani H, Letsholo K. Data mining algorithms: an ...
  • Deziel M, Olawo D, Truchon L, Golab L, editors. Analyzing ...
  • Parsapour F, Peymani J. Using data mining techniques for intelligent ...
  • Prakash V, Kumar D. A modified gated recurrent unit approach ...
  • Góngora Alonso S, Marques G, Agarwal D, De la Torre ...
  • Byeon H. A prediction model for mild cognitive impairment using ...
  • Tripathi T, Kumar R. Speech-based detection of multi-class Alzheimer’s disease ...
  • de Siqueira Rotenberg L, Borges-Junior RG, Lafer B, Salvini R, ...
  • Wilens TE, Faraone SV, Biederman J. Attention-deficit/hyperactivity disorder in adults. ...
  • نمایش کامل مراجع