Generative Adversarial Networks: A Systematic Review of Characteristics, Applications, and Challenges in Financial Data Generation and Market Modeling: ۲۰۱۹-۲۰۲۴

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 19

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-39-2_009

تاریخ نمایه سازی: 26 شهریور 1404

چکیده مقاله:

Generative Adversarial Networks (GANs) have emerged as a promising solution for machine learning and artificial intelligence algorithms constrained by data availability and accessibility. Financial markets, alongside healthcare, present significant challenges due to data privacy and confidentiality concerns. GANs enable researchers to generate synthetic financial data that closely mirrors real-world datasets, facilitating advancements in market analysis and modeling. Despite their potential, a comprehensive evaluation of GAN-based financial data generation remains limited, necessitating a systematic assessment of existing methodologies and findings. This paper presents a systematic review of GAN architectures applied to financial data generation and market modeling. Our study is distinguished by its comprehensive exploration of various GAN variants and their specific applications within different facets of financial markets, including stock price prediction, algorithmic trading, portfolio optimization, risk management, and fraud detection. Leveraging thirty relevant papers from four major databases (IEEE Xplore, Web of Science, Scopus, and arXiv), we synthesized key findings, identify challenges, and highlight limitations in the application of GANs for financial data generation. Our findings reveal that while GANs enhance data privacy and accessibility, they also face limitations such as mode collapse, instability during training, and regulatory concerns in financial markets. This qualitative review provides valuable insights for researchers and stakeholders, offering a foundation for future studies and innovative applications of GANs in financial markets.

نویسندگان

D. Wilson

Intelligent Automation and BioMed Genomics Laboratory, FST of Tangier, Abdelmalek Essaâdi University, Tetouan, Morocco

A. Azmani

Intelligent Automation and BioMed Genomics Laboratory, FST of Tangier, Abdelmalek Essaâdi University, Tetouan, Morocco

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Seyed Aghaei SMH, Rashno A, Fadaei S. Classification of Optical ...
  • Choi E, Biswal S, Malin B, Duke J, Stewart WF, ...
  • LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, ...
  • Farsi H, Ghermezi D, Barati A, Mohamadzadeh S. Improving Deep ...
  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, ...
  • Shahbakhsh MB, Hassanpour H. Empowering Face Recognition Methods using a ...
  • Radford A, Metz L, Chintala S. Unsupervised Representation Learning with ...
  • Zhang H, Xu T, Li H, Zhang S, Wang X, ...
  • Zhang H, Xu T, Li H, Zhang S, Wang X, ...
  • Dey A, Biswas S, Abualigah L. Umpire’s Signal Recognition in ...
  • Dey A, Biswas S. Shot-ViT: Cricket Batting Shots Classification with ...
  • Mirza M, Osindero S. Conditional Generative Adversarial Nets. arXiv; ۲۰۱۴. ...
  • Kamthe S, Assefa S, Deisenroth M. Copula Flows for Synthetic ...
  • Xu L, Skoularidou M, Cuesta-Infante A, Veeramachaneni K. Modeling Tabular ...
  • Boukrouh I, Azmani A. ARTIFICIAL INTELLIGENCE APPLICATIONS IN E-COMMERCE: A ...
  • Boukhlif M, Hanine M, Kharmoum N. A Decade of Intelligent ...
  • Abdi S, Yazdani M, Najafi E. Comprehensive Framework of Influential ...
  • Moher D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: ...
  • Puszka S, Walsh C, Markham F, Barney J, Yap M, ...
  • Khalid SK, Regina K, Jos K, Gerd A. Five steps ...
  • Fernández, M. I. E., Barbosa, P. L. & Guerrero, A. ...
  • Mongeon P, Paul-Hus A. The journal coverage of Web of ...
  • Echchakoui S. Why and how to merge Scopus and Web ...
  • Goodfellow I. NIPS ۲۰۱۶ Tutorial: Generative Adversarial Networks. arXiv; ۲۰۱۷. ...
  • Little C, Elliot M, Allmendinger R, Samani SS. Generative Adversarial ...
  • Arjovsky M, Chintala S, Bottou L. Wasserstein GAN. arXiv; ۲۰۱۷. ...
  • Brock A, Donahue J, Simonyan K. Large Scale GAN Training ...
  • Jinsung Y, Daniel J, Mihaela van der S. Time-series Generative ...
  • Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, ...
  • Karras T, Aittala M, Laine S, Härkönen E, Hellsten J, ...
  • Jordon J, Yoon J, Van Der Schaar M. PATE-GAN: Generating ...
  • Mohammadi A, Hamidi H. Analysis and Evaluation of Privacy Protection ...
  • Rajabi A, Garibay OO. TabFairGAN: Fair Tabular Data Generation with ...
  • Seyfi A, Rajotte JF, Ng RT. Generating multivariate time series ...
  • Ni H, Szpruch L, Sabate-Vidales M, Xiao B, Wiese M, ...
  • N.Kannan. A REVIEW OF DEEP GENERATIVE MODELS FOR SYNTHETIC FINANCIAL ...
  • Karst FS, Chong SY, Antenor AA, Lin E, Li MM, ...
  • Naritomi Y, Adachi T. Data Augmentation of High Frequency Financial ...
  • Mohapatra A, Kumar A, Kumar B, Agarwal H, Priyadarshini R. ...
  • Mtetwa JT, Ogudo K, Pudaruth S. VTCGAN: A Proposed Multimodal ...
  • Kwon S, Lee Y. Can GANs Learn the Stylized Facts ...
  • Gu J, Du W, Wang G. RAGIC: Risk-Aware Generative Adversarial ...
  • Dogariu M, Stefan LD, Boteanu BA, Lamba C, Ionescu B. ...
  • Park N, Gu YH, Yoo SJ. Synthesizing Individual Consumers′ Credit ...
  • Ramirez D, Peña JM, Suárez F, Larré O, Cifuentes A. ...
  • Kumar A, Alsadoon A, Prasad PWC, Abdullah S, Rashid TA, ...
  • Allen DE, Mushunje L, Peiris S. GANs and synthetic financial ...
  • Wiese M, Bai L, Wood B, Buehler H. Deep Hedging: ...
  • Pires OM, Nooblath MQ, Silva YAC, Da Silva MHF, Galvão ...
  • Sana JK, Rahman MS, Rahman MS. Privacy-Preserving Customer Churn Prediction ...
  • Chen L. Risk Management with Feature-Enriched Generative Adversarial Networks (FE-GAN). ...
  • Xia H, Sun S, Wang X, An B. Market-GAN: Adding ...
  • Yoo S, Jang J, Kim J. Development of a Stock ...
  • Boursin N, Remlinger C, Mikael J, Hargreaves CA. Deep Generators ...
  • Efimov D, Xu D, Kong L, Nefedov A, Anandakrishnan A. ...
  • Jiang M, Liang Y, Han S, Ma K, Chen Y, ...
  • Tovar W. Deep Learning Based on Generative Adversarial and Convolutional ...
  • Lu J, Yi S. Autoencoding Conditional GAN for Portfolio Allocation ...
  • Gu J, Deek FP, Wang G. Stock Broad-Index Trend Patterns ...
  • Wiese M, Knobloch R, Korn R, Kretschmer P. Quant GANs: ...
  • Lu J, Ding D. A Hybrid Approach on Conditional GAN ...
  • Fu W, Hirsa A, Osterrieder J. Simulating financial time series ...
  • Bezzina P, Vella V. Enhancing Portfolio Construction with Synthetic Data. ...
  • نمایش کامل مراجع