Generative Adversarial Networks: A Systematic Review of Characteristics, Applications, and Challenges in Financial Data Generation and Market Modeling: ۲۰۱۹-۲۰۲۴
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 39، شماره: 2
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 19
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-39-2_009
تاریخ نمایه سازی: 26 شهریور 1404
چکیده مقاله:
Generative Adversarial Networks (GANs) have emerged as a promising solution for machine learning and artificial intelligence algorithms constrained by data availability and accessibility. Financial markets, alongside healthcare, present significant challenges due to data privacy and confidentiality concerns. GANs enable researchers to generate synthetic financial data that closely mirrors real-world datasets, facilitating advancements in market analysis and modeling. Despite their potential, a comprehensive evaluation of GAN-based financial data generation remains limited, necessitating a systematic assessment of existing methodologies and findings. This paper presents a systematic review of GAN architectures applied to financial data generation and market modeling. Our study is distinguished by its comprehensive exploration of various GAN variants and their specific applications within different facets of financial markets, including stock price prediction, algorithmic trading, portfolio optimization, risk management, and fraud detection. Leveraging thirty relevant papers from four major databases (IEEE Xplore, Web of Science, Scopus, and arXiv), we synthesized key findings, identify challenges, and highlight limitations in the application of GANs for financial data generation. Our findings reveal that while GANs enhance data privacy and accessibility, they also face limitations such as mode collapse, instability during training, and regulatory concerns in financial markets. This qualitative review provides valuable insights for researchers and stakeholders, offering a foundation for future studies and innovative applications of GANs in financial markets.
کلیدواژه ها:
Generative Adversarial Networks ، Synthetic Financial Data ، Systematic review ، Deep learning applications ، Financial Time Series Modeling
نویسندگان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :