A Hybrid Invasive Weed Optimization - Convolutional Neural Network and Bidirectional Generative Adversarial Network for White Blood Cell Image Segmentation and Classification in Leukemia Analysis
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 39، شماره: 6
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 41
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-39-6_016
تاریخ نمایه سازی: 26 شهریور 1404
چکیده مقاله:
Accurate segmentation and classification of white blood cells (WBCs) are essential for automated hematological diagnostics, especially in early detection of leukemia. This study proposes a novel hybrid framework that integrates three complementary components: a U-Net-based segmentation model for precise extraction of WBCs from peripheral smear images, a Bidirectional Generative Adversarial Network (Bi-GAN) for synthetic data generation to address class imbalance, and a Convolutional Neural Network (CNN) classifier whose hyperparameters are optimized using the Invasive Weed Optimization (IWO) algorithm. Additionally, a fuzzy SoftMax layer is employed to enhance classification robustness in the presence of morphological ambiguity between WBC subtypes. The framework is evaluated on two widely used benchmark datasets, BCCD and LISC, achieving classification accuracies of ۹۹.۶% and ۹۹.۲۸%, respectively. Class-wise performance analysis using precision, recall, and F۱-score demonstrates the method's capability to effectively distinguish between all five WBC classes, including rare types such as basophils and eosinophils. The results confirm that the proposed system provides a reliable, interpretable, and computationally efficient solution for automated leukocyte classification and shows strong potential for deployment in real-time clinical settings.
کلیدواژه ها:
White blood cell classification ، Leukemia diagnosis ، U-Net Segmentation ، Bidirectional Generative Adversarial Network Augmentation ، invasive weed optimization ، convolutional neural network
نویسندگان
H. Zakerian
Department of Computer Engineering, Bab.C, Islamic Azad University, Babol, Iran
M. Yadollahzadeh-Tabari
Department of Computer Engineering, Bab.C, Islamic Azad University, Babol, Iran
H. Shirgahi
Department of Computer Engineering Jo.C, Jouybar, Islamic Azad University, Iran
H. Motameni
Department of Computer Engineering, Sar.C, Islamic Azad University, Sari, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :