Financial Market Analysis Using Deep Learning: A Framework for Market Behavior Prediction

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 116

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AAIEH01_019

تاریخ نمایه سازی: 22 شهریور 1404

چکیده مقاله:

The prediction of financial market trends has always been a challenging yet critical task due to the market's dynamic, nonlinear, and volatile nature. This paper proposes a deep learning-based framework for predicting stock price movements by leveraging historical time series data. The study evaluates the performance of different deep architectures including Long Short-Term Memory (LSTM), Bidirectional LSTM (BILSTM), and CNN-LSTM on financial datasets. Experimental results demonstrate that the hybrid CNN-LSTM model achieves the highest directional accuracy and lowest prediction error compared to standalone models. These findings highlight the effectiveness of deep learning in capturing temporal and structural patterns within financial data.

نویسندگان

Mohammad Mehdi Mehraein

Department of Financial Management, Islamic Azad University, Central Tehran Branch, Tehran, Iran