Predicting Water-Based Nanofluid Viscosity Using Machine Learning: Performance Evaluation of LS-SVM, GMDH, and GP Models

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 14

فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-44-9_013

تاریخ نمایه سازی: 21 شهریور 1404

چکیده مقاله:

Viscosity is one of the most important properties of nanofluids, which has a direct influence on fluid flow as well as convective heat transfer. Despite extensive experimental studies and theoretical models, accurate prediction of nanofluid viscosity remains challenging due to the complex interplay of nanoparticle properties, base fluid characteristics, and temperature effects. Herein, three machine learning approaches, including Least Squares Support Vector Machine (LS-SVM), Group Method of Data Handling (GMDH), and Genetic Programming (GP), were designed and compared for predicting the effective viscosity of water-based nanofluids containing Al۲O۳, CuO, TiO۲, and SiO۲ nanoparticles (NPs). For this purpose, a collection of ۷۹۵ experimental data points has been extracted from literature sources. The effective input variables, including temperature, the viscosity of water (as the base fluid), volume fraction, and diameter of the NPs, were used as input variables of the models. To find the best model for predicting nanofluid viscosity, the performance of the developed models was evaluated via statistical and graphical methods. In addition, the prediction ability of the machine learning methods was compared with some well-known theoretical models. The obtained results showed that the LS-SVM model can predict the experimental data with an average absolute relative deviation of ۱.۵۷۱% and a coefficient of determination up to ۰.۹۹۵۲. Accordingly, the LS-SVM model showed the best performance and the most reliable and accurate prediction of water-based nanofluid viscosity. The Shapley additive explanation (SHAP) method was also applied to predict the influence of each data point and each input feature on the model output, revealing the significance of the volume fraction of NPs and viscosity of water with absolute values of ۱.۶۵ and ۰.۲۵, respectively.

کلیدواژه ها:

Least Squares Support Vector Machine ، Nanofluids viscosity ، Genetic programming ، Machine Learning

نویسندگان

Hassan Abedini

Chemical Engineering at the Department of Chemical Engineering, University of Science and Technology of Mazandaran, ۴۸۵۱۸-۷۸۱۹۵, Behshahr, I.R. IRAN

Alexei Rozhenko

AI Talent Hub, ITMO University, Saint Petersburg, ۱۹۷۱۰۱, RUSSIA

Fahimeh Hadavimoghaddam

Petroleum Engineering at Institute of Unconventional Oil & Gas, Northeast Petroleum University, Heilongjiang, Daqing, ۱۶۳۳۱۸, P.R. CHINA

Mohsen Tamtaji

Chemical Engineering at the Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, I.R. IRAN

Jafar Abdi

Chemical Engineering at the Faculty of Chemical and Materials Engineering, Shahrood University of Technology, ۳۶۱۹۹۹۵۱۶۱ Shahrood, I.R. IRAN

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Numerical Study of Natural Convection of Nanofluids in an Inclined Flat Bottom Flask Using Finite-Volume Approach [مقاله ژورنالی]
  • Salhi H., Chafai N., Evaluation pf the Thermal Conductivity pf ...
  • Salhi H., Chafai N., Numerical Simulation of Heat Transfer in ...
  • Chamkha A.J., Armaghani T., Mansour M.A., Rashad A.M., Kargarsharifabad H., ...
  • Kargarsharifabad H., Experimental and Numerical Study of Natural Convection of ...
  • Masuda H., Ebata A., Teramae K., Hishinuma N., Alteration of ...
  • Li C.H., Peterson G., Experimental Investigation of Temperature and Volume ...
  • Murray D., Local Enhancement of Heat Transfer in a Particulate ...
  • Eastman J.A., Choi U., Li S., Thompson L., Lee S., ...
  • Hamilton R.L., Crosser O., Thermal Conductivity of Heterogeneous Two-Component Systems, ...
  • Pak B.C., Cho Y.I., Hydrodynamic and Heat Transfer Study of ...
  • Wang X., Xu X., Choi S.U., Thermal Conductivity of Nanoparticle-Fluid ...
  • Nguyen C., Desgranges F., Roy G., Galanis N., Maré T., ...
  • Duangthongsuk W., Wongwises S., Measurement of Temperature-Dependent Thermal Conductivity and ...
  • Meyer J., Nwosu P., Sharifpur M., Ntumba T., “Parametric Analysis ...
  • Einstein A., Eine Neue Bestimmung Der Moleküldimensionen, In, Eth Zurich, ...
  • Brinkman H.C., The Viscosity of Concentrated Suspensions and Solutions, The ...
  • Batchelor G.K., The Effect of Brownian Motion on the Bulk ...
  • Masoud Hosseini S., Moghadassi A., Henneke D., A New Dimensionless ...
  • Kole M., Dey T., Viscosity of Alumina Nanoparticles Dispersed in ...
  • Sahoo B.C., Vajjha R.S., Ganguli R., Chukwu G.A., Das D.K., ...
  • Abu-Nada E., Effects of Variable Viscosity and Thermal Conductivity of ...
  • Vakili-Nezhaad G., Dorany A., Effect of Single-Walled Carbon Nanotube on ...
  • Ward S., Properties of Well-Defined Suspensions of Solids in Liquids, ...
  • Chen H., Ding Y., Tan C., Rheological Behaviour of Nanofluids, ...
  • Manickaraj J., Balasubramanian N., Estimation of the Heat Transfer Coefficient ...
  • Tabaraki R., Khayamian T., Ensafi A., Wavelet Neural Network Modeling ...
  • Su T., Jhang J., Hou C., A Hybrid Artificial Neural ...
  • Nejatian I., Kanani M., Arabloo M., Bahadori A., Zendehboudi S., ...
  • Hamzehie M., Mazinani S., Davardoost F., Mokhtare A., Najibi H., ...
  • Mehrabi M., Sharifpur M., Meyer J.P., Viscosity of Nanofluids Based ...
  • Yousefi F., Karimi H., Papari M.M., Modeling Viscosity of Nanofluids ...
  • Kumar K.P., Khedkar R., Sharma P., Elavarasan R.M., Paramasivam P., ...
  • Sharma K., Sai P.S.T., Sharma P., Kanti P.K., Bhramara P., ...
  • Kanti P.K., Sharma K., Hn A.R., Karbasi M., Said Z., ...
  • Arabloo M., Ziaee H., Lee M., Bahadori A., Prediction of ...
  • Mesbah M., Soroush E., Shokrollahi A., Bahadori A., Prediction of ...
  • Ahmadi M.A., Ebadi M., Hosseini S.M., Prediction Breakthrough Time of ...
  • Fattahi M., Abedini H., Baghban A., Anbaz M.A., Application of ...
  • Chen Y., Ma S., Lei Y., Liang X., Liu X., ...
  • Chen Y., Peng B., Kontogeorgis G.M., Liang X., Machine Learning ...
  • Lei Y., Ma S., Du L., Liu X., Wu X., ...
  • Vapnik V.N., The Nature of Statistical Learning, Theory, (۱۹۹۵) ...
  • Suykens J.A., Vandewalle J., Least Squares Support Vector Machine Classifiers, ...
  • Suykens J., Van Gestel T., De Brabanter J., De Moor ...
  • Anoop K., Kabelac S., Sundararajan T., Das S.K., Rheological and ...
  • Pastoriza-Gallego M.J., Casanova C., Legido J.A., Piñeiro M.M., CuO in ...
  • Kwek D., Crivoi A., Duan F., Effects of Temperature and ...
  • Tavman I., Turgut A., Chirtoc M., Schuchmann H., Tavman S., ...
  • Chandrasekar M., Suresh S., Bose A.C., Experimental Investigations and Theoretical ...
  • Fedele L., Colla L., Bobbo S., Viscosity and Thermal Conductivity ...
  • Pastoriza-Gallego M., Casanova C., Páramo R., Barbés B., Legido J., ...
  • Lee J.-H., Hwang K.S., Jang S.P., Lee B.H., Kim J.H., ...
  • Turgut A., Tavman I., Chirtoc M., Schuchmann H., Sauter C., ...
  • Murshed S., Leong K., Yang C., Investigations of Thermal Conductivity ...
  • Masuda H., Ebata A., Teramae K., Alteration of Thermal Conductivity ...
  • Gunn S.R., Support Vector Machines for Classification and Regression, ISIS ...
  • Müller K.-R., Mika S., Tsuda K., Schölkopf K., An Introduction ...
  • Xavier-De-Souza S., Suykens J.A., Vandewalle J., Bollé D., Coupled Simulated ...
  • Abdi J., Bastani D., Abdi J., Mahmoodi N.M., Shokrollahi A., ...
  • Salehi E., Abdi J., Aliei M.H., Assessment of Cu(II) Adsorption ...
  • Hoseingholi P., Moeini R., Pipe Failure Prediction of Wastewater Network ...
  • Soltani A., Ghorbani M., Fard A., Darbandi S., Farsadizade D., ...
  • R. John, Koza. “Genetic Programming: On the Programming of Computers ...
  • Johari A., Nakhaee M., “Prediction of Undrained Lateral Load Capacity ...
  • Karimi M., Vaferi B., Hosseini S., Olazar M., Rashidi S., ...
  • Yan Z., Wang S., Ma D., Liu B., Lin H., ...
  • Van Doorn J., Ly A., Marsman M., Wagenmakers E.-J., Bayesian ...
  • Abdi J., Hadipoor M., Hadavimoghaddam F., Hemmati-Sarapardeh A., Estimation of ...
  • Abdi J., Mazloom G., Machine Learning Approaches for Predicting Arsenic ...
  • Anker A.S., Kjær E.T., Juelsholt M., Christiansen T.L., Skjærvø S.L., ...
  • Shin D., Choi G., Hong C., Han J.W., Surface Segregation ...
  • Tamtaji M., Chen S., Hu Z., Goddard III W.A., Chen ...
  • Zong X., Vlachos D.G., Exploring Structure-Sensitive Relations for Small Species ...
  • Hu X., Yin D., Chen X., Xiang G., Experimental Investigation ...
  • Tamtaji M., Guo X., Tyagi A., Galligan P.R., Liu Z., ...
  • نمایش کامل مراجع