Application of Clustering Methods to Identify High-grade Zones a Case Study: Lar Porphyry Deposit, Sistan and Baluchistan Province, Southeastern Iran

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 118

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMAE-16-3_015

تاریخ نمایه سازی: 16 شهریور 1404

چکیده مقاله:

Various methods have been used for clustering big data. Pattern recognition methods are suitable methods for clustering these data. Due to the large volume of samples taken in the drilling of mines and their analysis for various elements, this category of geochemical data can be considered big data. Examining and evaluating drilling data in the Lar copper mine in Sistan and Baluchistan province located in the southeast of Iran requires the use of these methods. Therefore, the main goal of the article is the clustering of the drilling data in the mentioned mine and its zoning of the geochemical data. To achieve this goal, ۳۵۰۰ samples taken from drilling cores have been used. Elemental analysis for six elements has been done using the ICP-Ms method. Pattern recognition methods including SOM and K-MEANS have been used to evaluate the relation between these elements. The silhouette method has been used to determine and evaluate the number of clusters. Using this method, ۴ clusters have been considered for the mentioned data. According to this method, it was found that the accuracy of clustering is higher in the SOM method. By considering the ۴ clusters, ۴ zones were identified using clustering methods. By comparing the results of the two methods and using the graphical method, it was determined that the SOM method has a better performance for clustering geochemical data in the studied area. Based on that, zones ۲ and ۴ were recognized as high-grade zones in this area.

کلیدواژه ها:

نویسندگان

Moslem Jahantigh

Department of Mining Engineering, Faculty of Mine, AmirKabir University, Tehran, Iran

Hamidreza Ramazi

Department of Mining Engineering, Faculty of Mine, AmirKabir University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • . Mostafaei K, Ramazi K (۲۰۱۸) ۳D model construction of ...
  • . Mostafaei K, Ramazi H (۲۰۱۹) Mineral resource estimation using ...
  • . Sinclair, W (۲۰۰۷) Porphyry deposits. Mineral deposits of Canada: ...
  • . Takaew P, Cecilia Xia J, Doucet LS (۲۰۲۴) Machine ...
  • . Farhadi, S Tatullo, MB Konari, P Afzal (۲۰۲۴) Evaluating ...
  • . Templ M, Filzmoser P, Reimann C (۲۰۰۸) Cluster analysis ...
  • . Zhang Z, Lin S, Ye Y,Xu z, Zhao H, ...
  • . Bigdeli A, Maghsoudi A, Ghezelbash R (۲۰۲۲) Application of ...
  • . Žalik KR (۲۰۰۸) An efficient k′-means clustering algorithm. Pattern ...
  • . Sarparandeh M, Hezarkhani A (۲۰۱۷) Application of unsupervised pattern ...
  • . Sarparandeh M, Hezarkhani A (۲۰۱۶) Application of Self-Organizing Map ...
  • . Ghezelbash R, Maghsoudi A, Carranza EJM (۲۰۲۰) Optimization of ...
  • . Fu Q, Li Y, Albathan M (۲۰۲۳) A supervised ...
  • . Boomeri M, Moradi R, Stein H, Bagheri S (۲۰۱۹) ...
  • . Nakisa M (۲۰۰۲) Results of Exploration Studies and Reserves ...
  • . MORADI R, BOOMERI M, BAGHERI S, NAKASHIMA K (۲۰۱۶) ...
  • . Chen K, Abtahi F, Carrero J-J, Fernandez- Llatas C ...
  • . Shu X, Ye Y (۲۰۲۳) Knowledge Discovery: Methods from ...
  • . Chaudhry M, Shafi I, Mahnoor M, Ramirez D. Bautista ...
  • . Abdulnassar AA, Nair LR (۲۰۲۳) Performance analysis of Kmeans ...
  • . Kohonen T (۱۹۹۰) The self-organizing map. Proceedings of the ...
  • . Jensen CA, Reed RD, Marks RJ, El-Sharkawi MA, Jung ...
  • . Vesanto J (۱۹۹۹) SOM-based data visualization methods. Intelligent Data ...
  • نمایش کامل مراجع