Image Inpainting Enhancement by Replacing the Original Mask with a Self-attended Region from the Input Image

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 36

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-13-3_010

تاریخ نمایه سازی: 12 شهریور 1404

چکیده مقاله:

Image inpainting, the process of restoring missing or corrupted regions of an image by reconstructing pixel information, has recently seen considerable advancements through deep learning-based approaches. Aiming to tackle the complex spatial relationships within an image, in this paper, we introduce a novel deep learning-based pre-processing methodology for image inpainting utilizing the Vision Transformer (ViT). Unlike CNN-based methods, our approach leverages the self-attention mechanism of ViT to model global contextual dependencies, improving the quality of inpainted regions. Specifically, we replace masked pixel values with those generated by the ViT, utilizing the attention mechanism to extract diverse visual patches and capture discriminative spatial features. To the best of our knowledge, this is the first instance of such a pre-processing model being proposed for image inpainting tasks. Furthermore, we demonstrate that our methodology can be effectively applied using a pre-trained ViT model with a pre-defined patch size, reducing computational overhead while maintaining high reconstruction fidelity. To assess the generalization capability of the proposed methodology, we conduct extensive experiments comparing our approach with four standard inpainting models across four public datasets. The results validate the efficacy of our pre-processing technique in enhancing inpainting performance, particularly in scenarios involving complex textures and large missing regions.

کلیدواژه ها:

Image inpainting ، Generative Adversarial Network (GAN) ، Vision Transformer (ViT) ، Loss ، Reconstructed image

نویسندگان

Kourosh Kiani

Electrical and Computer Engineering Faculty, Semnan University, Semnan ۳۵۱۳۱۱۹۱۱۱, Iran.

Razieh Rastgoo

Electrical and Computer Engineering Faculty, Semnan University, Semnan ۳۵۱۳۱۱۹۱۱۱, Iran.

Alireza Chaji

Electrical and Computer Engineering Faculty, Semnan University, Semnan ۳۵۱۳۱۱۹۱۱۱, Iran.

Sergio Escalera

Department of Mathematics and Informatics, Universität de Barcelona, and Computer Vision Center, Barcelona, Spain.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Fakhari, K. Kiani, "A new restricted boltzmann machine training ...
  • A. Fakhari, K. Kiani, "An image restoration architecture using abstract ...
  • J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, ...
  • Y. Wang, X. Tao, X. Qi, X. Shen, J. Jia, ...
  • N. Majidi, K. Kiani, and R. Rastgoo, "A Deep Model ...
  • A. Pourreza, K. Kiani, " A partial-duplicate image retrieval method ...
  • T. S. Cho, M. Butman, S. Avidan and W. T. ...
  • K. Kiani, R. Hematpour, R. Rastgoo, "Automatic grayscale image colorization ...
  • I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, ...
  • O. Elharrouss, R. Damseh, A. Nasreddine Belkacem, E. Badidi, A. ...
  • S. Iizuka, E. Simo-Serra, H. Ishikawa, "Globally and locally consistent ...
  • Y. Li, S. Liu, J. Yang, M.H. Yang, "Generative face ...
  • D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, A.A. Efros, ...
  • R.A. Yeh, C. Chen, T.Y. Lim, A.G. Schwing, M. Hasegawa-Johnson, ...
  • C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, ...
  • K. He and J. Sun, "Statistics of patch offsets for ...
  • C. Barnes, E. Shechtman, A. Finkelstein, D.B. Goldman, "Patchmatch: A ...
  • K. He, J. Sun, "Image completion approaches using the statistics ...
  • D. Ciregan, U. Meier, J. Schmidhuber, "Multi-column deep neural networks ...
  • Y. Zhang, D. Zhou, S. Chen, S. Gao, Y. Ma, ...
  • F. Agostinelli, M.R. Anderson, H. Lee, "Adaptive multi-column deep neural ...
  • T. Karras, T. Aila, S. Laine, J. Lehtinen, "Progressive growing ...
  • C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, J. Verdera, ...
  • M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, "Image inpainting," ...
  • D. Simakov, Y. Caspi, E. Shechtman, M. Irani, "Summarizing visual ...
  • R. Köhler, C. Schuler, B. Schölkopf, S. Harmeling, "Mask-specific inpainting ...
  • L. Xu, J.S.J. Ren, C. Liu, J. Jia, "Deep convolutional ...
  • X. Snelgrove, "High-resolution multi-scale neural texture synthesis," In SIGGRAPH ASIA ...
  • C. Li, M. Wand, "Combining markov random fields and convolutional ...
  • Y. Jeon, J. Kim, "Active convolution: Learning the shape of ...
  • J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, ...
  • W. Li, Z. Lin, K. Zhou, L. Qi, Y. Wang, ...
  • H. Wu, J. Zhou, Y. Li, "Deep Generative Model for ...
  • Z. Mohammadi, A. Akhavanpour, R. Rastgoo, M. Sabokrou, " Diverse ...
  • Places۲ Dataset, Available: http://places۲.csail.mit. edu/download-private.html, Access Date: Nov. ۲۰۲۴ ...
  • ImageNet Dataset, Available: https://www.image-net.org/, Access Date: Nov. ۲۰۲۴ ...
  • A. Horé, D. Ziou, "Image Quality Metrics: PSNR vs. SSIM," ...
  • Python, Available: https://www.python.org. Access Date: Feb. ۲۰۲۴ ...
  • PyTorch, Available: https://pytorch.org. Access Date: Feb. ۲۰۲۴ ...
  • MalImg, Available: https://www.kaggle.com/datasets/manmandes/malimg. Access Date: Feb. ۲۰۲۴ ...
  • MaleVis, Available: https://www.kaggle.com/datasets/sohamkumar۱۷۰۳/malevis-dataset. Access Date: Feb. ۲۰۲۴ ...
  • MNIST, Available: https://www.kaggle.com/datasets/hojjatk/mnist-dataset. Access Date: Feb. ۲۰۲۴ ...
  • L. Maaten, G. Hinton, "Visualizing data using t-SNE. Journal of ...
  • نمایش کامل مراجع