ConSPro: Context-Aware Stance Detection Using Zero-Shot Prompting
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 13، شماره: 2
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 31
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-13-2_010
تاریخ نمایه سازی: 12 شهریور 1404
چکیده مقاله:
Stance detection is the process of identifying and classifying an author's point of view or stance towards a specific target in a given text. Most of previous studies on stance detection neglect the contextual information hidden in the input data and as a result lead to less accurate results. In this paper, we propose a novel method called ConSPro, which uses decoder-only transformers to consider contextual input data in the process of stance detection. First, ConSPro applies zero-shot prompting of decoder only transformers to extract the context of target in the input data. Second, in addition to target and input text, ConSPro uses the extracted context as the third type of parameter for the ensemble method. We evaluate ConSPro on SemEval۲۰۱۶ and the empirical results indicate that ConSPro outperforms the non-contextual approaches methods, on average ۹% with respect to f-measure. The findings of this study show the strong capabilities of zero-shot prompting for extracting the informative contextual information with significantly less effort comparing to previous methods on context extraction.
کلیدواژه ها:
نویسندگان
Milad Allahgholi
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.
Hossein Rahmani
School of Computer engineering, Iran University of Science and Technology, Tehran, Iran.
Parinaz Soltanzadeh
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :