What Drives House Prices? A Linear Regression Approach to Size, Condition, and Features
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 13، شماره: 1
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 33
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-13-1_004
تاریخ نمایه سازی: 12 شهریور 1404
چکیده مقاله:
This research examines the key factors influencing house prices, focusing on how size, condition, and structural features contribute to property valuation. Using a dataset from Washington State, USA, covering the year ۲۰۱۴ with over ۴,۶۰۰ entries, a multivariate analysis was conducted with a Linear Regression model to assess the relationships between crucial features such as square footage, number of bedrooms, bathrooms, floors, and additional structural elements like garage presence and yard size. The analysis revealed that square footage and bathrooms exhibit the strongest positive correlations with house prices (both with correlation values of ۰.۷۶, statistically significant at p < ۰.۰۵), indicating their substantial impact on property valuation. In contrast, factors like condition and view demonstrated weaker correlations, suggesting a more limited influence. The Linear Regression model explained ۷۵% of the variation in house prices (R۲ = ۰.۷۵), with validation conducted using a holdout test set to ensure generalizability. While the model effectively highlights key price determinants, its limitations in handling non-linear relationships and sensitivity to outliers were addressed through data transformation and outlier removal. Compared to prior studies, this research reinforces established findings on square footage and bathrooms while providing new insights into the comparatively lower impact of property condition. Future work could explore advanced predictive models, such as non-linear regression and machine learning techniques, to better capture complex relationships and improve forecasting accuracy. These findings offer valuable insights for buyers, sellers, and industry professionals, emphasizing the importance of a data-driven approach to understanding house price dynamics.
کلیدواژه ها:
نویسندگان
Ju Xiaolin
School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China
Vaskar Chakma
School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China
Misbahul Amin
School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China
Arkhid Joy
School of Information and Management Systems Engineering, Nagaoka University of Technology, Japan.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :