What Drives House Prices? A Linear Regression Approach to Size, Condition, and Features

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 33

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-13-1_004

تاریخ نمایه سازی: 12 شهریور 1404

چکیده مقاله:

This research examines the key factors influencing house prices, focusing on how size, condition, and structural features contribute to property valuation. Using a dataset from Washington State, USA, covering the year ۲۰۱۴ with over ۴,۶۰۰ entries, a multivariate analysis was conducted with a Linear Regression model to assess the relationships between crucial features such as square footage, number of bedrooms, bathrooms, floors, and additional structural elements like garage presence and yard size. The analysis revealed that square footage and bathrooms exhibit the strongest positive correlations with house prices (both with correlation values of ۰.۷۶, statistically significant at p < ۰.۰۵), indicating their substantial impact on property valuation. In contrast, factors like condition and view demonstrated weaker correlations, suggesting a more limited influence. The Linear Regression model explained ۷۵% of the variation in house prices (R۲ = ۰.۷۵), with validation conducted using a holdout test set to ensure generalizability. While the model effectively highlights key price determinants, its limitations in handling non-linear relationships and sensitivity to outliers were addressed through data transformation and outlier removal. Compared to prior studies, this research reinforces established findings on square footage and bathrooms while providing new insights into the comparatively lower impact of property condition. Future work could explore advanced predictive models, such as non-linear regression and machine learning techniques, to better capture complex relationships and improve forecasting accuracy. These findings offer valuable insights for buyers, sellers, and industry professionals, emphasizing the importance of a data-driven approach to understanding house price dynamics.

نویسندگان

Ju Xiaolin

School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China

Vaskar Chakma

School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China

Misbahul Amin

School of Artificial Intelligence and Computer Science, Nantong University, Nantong, China

Arkhid Joy

School of Information and Management Systems Engineering, Nagaoka University of Technology, Japan.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • C. Saunders, A. Gammerman, and V. Vovk, “Ridge regression learning ...
  • I. Forys, “Machine learning in house price analysis: regression´ models ...
  • M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, ...
  • B. Park and J. K. Bae, “Using machine learning algorithms ...
  • Q. Truong, M. Nguyen, H. Dang, and B. Mei, “Housing ...
  • M. Nikou, G. Mansourfar, and J. Bagherzadeh, “Stock price prediction ...
  • Y.-X. Wang and M. Hebert, “Learning to learn: Model regression ...
  • J. Gong and S. Sun, “A new approach of stock ...
  • L. O. Taylor and V. K. Smith, “Environmental amenities as ...
  • D. Maulud and A. M. Abdulazeez, “A review on linear ...
  • C. Himmelberg, C. Mayer, and T. Sinai, “Assessing high house ...
  • M. Li, “Moving beyond the linear regression model: Advantages of ...
  • K. F. Nimon and F. L. Oswald, “Understanding the results ...
  • R. R. Hocking, Methods and applications of linear models: regression ...
  • D. Ghosh and A. Vogt, “Outliers: An evaluation of methodologies,” ...
  • C. Liu and W. Xiong, “China’s Real Estate Market,” ۲۰۱۸ ...
  • J. Kahr and M. C. Thomsett, Real estate market valuation ...
  • M. M. Hassan, N. Ahmad, and A. H. Hashim, “The ...
  • F. Ullah and S. M. Sepasgozar, “Key factors influencing purchase ...
  • J. V. Duca, J. Muellbauer, and A. Murphy, “What drives ...
  • K. W. Chau and T. Chin, “A critical review of ...
  • M.-L. T. Nguyen, “The hedonic pricing model applied to the ...
  • J. Zaki, A. Nayyar, S. Dalal, and Z. H. Ali, ...
  • G. Lisi, “Property valuation: the hedonic pricing model–location and housing ...
  • A. V. Heyman, S. Law, and M. Berghauser Pont, “How ...
  • S. Rosen, “Hedonic prices and implicit markets: product differentiation in ...
  • L. Rokach and O. Maimon, “Decision trees,” Data Mining and ...
  • Z. Zhang, “Decision trees for objective house price prediction,” in ...
  • P. S. M. Reddy et al., “Decision tree regressor compared ...
  • M. Thamarai and S. Malarvizhi, “House price prediction modeling using ...
  • V. S. Rana, J. Mondal, A. Sharma, and I. Kashyap, ...
  • L. Breiman, “Random forests,” Machine Learning, vol. ۴۵, pp. ۵– ...
  • J. Hong, H. Choi, and W.-s. Kim, “A house price ...
  • Y. Zhang, J. Huang, J. Zhang, S. Liu, and S. ...
  • S. S. Jamil, S. Bansal, and L. Vinjamuri, “House price ...
  • C. Bentejac, A. Cs´ org¨ o, and G. Mart˝ ´ınez-Munoz, ...
  • R. Sibindi, R. W. Mwangi, and A. G. Waititu, “A ...
  • A. Hjort, J. Pensar, I. Scheel, and D. E. Sommervoll, ...
  • S. Li, Y. Jiang, S. Ke, K. Nie, and C. ...
  • S. Wang, H. Li, J. Li, Y. Zhang, and B. ...
  • J. A. Seaman, “Black boxes,” Emory LJ, vol. ۵۸, p. ...
  • M. Khan, P. Debnath, A. Al Sayeed, M. F. I. ...
  • J. Beimer, M. Francke, et al., “Out-of-sample house price prediction ...
  • C. Mueller-Kett, “Artificial intelligence for greater transparency in housing price ...
  • R. Manjula, S. Jain, S. Srivastava, and P. R. Kher, ...
  • Y. Mao and R. Yao, “A geographic feature integrated multivariate ...
  • S. Lu, Z. Li, Z. Qin, X. Yang, and R. ...
  • J. Yu, “Prediction on housing price based on the data ...
  • N. Chen, “House price prediction model of zhaoqing city based ...
  • S. Oz¨ o¨g˘ur Aky¨ uz, B. Eygi Erdogan,¨ O. Yıldız, ...
  • N. Yahya, N. M. M. Zainuddin, N. N. A. Sjarif, ...
  • K. S. Cabuk, S. K. Cengiz, M. G. Guler, H. ...
  • D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient ...
  • S. Malpezzi, “A simple error correction model of house prices,” ...
  • D. Batory, “Feature models, grammars, and propositional formulas,” in International ...
  • M. Afrasiabi, M. Mohammadi, M. Rastegar, L. Stankovic, S. Afrasiabi, ...
  • J. Miles and M. Shevlin, “Applying regression and correlation: A ...
  • L. M. Soegianto, A. T. Hinandra, P. A. Suri, and ...
  • نمایش کامل مراجع