Developing a predictive model for engineering graduates placement using a data-driven machine learning approach

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 58

فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_APRIE-11-4_003

تاریخ نمایه سازی: 11 شهریور 1404

چکیده مقاله:

This study presents a novel predictive model for engineering graduates' placement outcomes using Machine Learning (ML) techniques. The model is built on a comprehensive dataset that includes students' performance in various skill areas and their subsequent placement status. By employing a range of ML algorithms, the study evaluates their performance in terms of accuracy. The findings reveal the Customized Random Forest Model (CRFM) algorithm as the most accurate, with a prediction rate of ۸۹%. Furthermore, the study also evaluates the target job domain or field in which students aim to secure placements as well as their target salary packages using the Customized Principal Component Analysis (CPCA) model. The research highlights the importance of various skills, such as programming, aptitude, and domain knowledge, in determining the employability of engineering graduates. The study underscores the importance of various skills, such as programming, aptitude, and domain knowledge, in determining the employability of engineering graduates. The proposed model has directed and practical implications for educational institutions, policymakers, and employers, enabling them to identify the key factors that influence the employability of engineering graduates and develop strategies to enhance their employability.

نویسندگان

Md Jakir Hossain Molla

Department of Computer Science and Engineering, Aliah University, Kolkata-۷۰۰۰۱۶۰, India.

Sk Md Obaidullah

Department of Computer Science and Engineering, Aliah University, Kolkata-۷۰۰۰۱۶۰, India.

Soumya Sen

A.K.Choudhury School of Information Technology, University of Calcutta, Kolkata-۷۰۰۱۰۶, India.

Gerhard-Wilhelm Weber

Institute of Applied Mathematics, METU, Ankara, Turkey.

Chiranjibe Jana

Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai ۶۰۲۱۰۵, Tamil Nadu, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Casuat, C. D., Sadhiqin Mohd Isira, A., Festijo, E. D., ...
  • Vashisht, M. G., & Grover, R. (۲۰۱۹). Employability profiling of ...
  • Molla, M. J. H., Obaidullah, S. M., Sen, S., Weber, ...
  • Jose, I. T., Raju, D., Aniyankunju, J. A., James, J., ...
  • نمایش کامل مراجع