INTRODUCING THE ICN MODEL: A NOVEL APPROACH FOR PREDICTING CRITICAL POINTS IN SOCIAL TRENDS

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 249

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

TETSCONF16_033

تاریخ نمایه سازی: 10 شهریور 1404

چکیده مقاله:

In this paper, we present the ICN (Intersection Convergence Network) model as a novel approach for identifying and predicting critical points in social trend data. Unlike traditional models that focus on the overall trend fitting, the ICN model detects pivotal changes by analyzing the convergence of first and second derivatives. We apply the model to Brazil's homicide rate and GDP per capita data from ۱۹۹۰ to ۲۰۲۰, and compare its predictive performance with that of ARIMA and neural networks. The findings demonstrate that ICN provides improved accuracy and robustness, particularly in the presence of structural shifts and high data volatility.

کلیدواژه ها:

نویسندگان

Milad Kherghehandaz

Independent Researcher, MSc student at Sharif University of Technology, Tehran, Iran