PID vs. Reinforcement Learning: A Comparative Study on Autonomous Driving in the Gymnasium Car Racing Environment

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 43

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ECMCONF10_071

تاریخ نمایه سازی: 8 شهریور 1404

چکیده مقاله:

In this paper, we investigate two distinct control strategies for autonomous vehicles navigating tracks: Proportional-Integral-Derivative (PID) control and Proximal Policy Optimization (PPO). We compare their feasibility and computational efficiency and introducing a novel approach for longitudinal and lateral control within the CarRacing environment of OpenAI’s Gymnasium. While deep reinforcement learning methods, such as PPO, have demonstrated significant potential in the control domain, they often require substantial computational resources and time due to the inherent exploration-exploitation trade-off. Our findings suggest that, in certain scenarios, classical control techniques like PID offer greater reliability and ease of implementation.

نویسندگان

Ali Roshandelzade

MSc student at Babol Noshirvani University of Technology, Shariati Av., Babol, Mazandaran, Iran

Behrooz Rezaie

Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Shariati Av., Babol, Mazandaran, Iran