Straightforward method to predict the impact sensitivity of nitro aromatic compounds using molecular images

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,093

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CAAT03_176

تاریخ نمایه سازی: 29 بهمن 1392

چکیده مقاله:

In the present work, multivariate image analysis combined with quantitative structure property relationships was considered to predict impact sensitivity of nitro aromatic energetic compounds. The analysis was performed between 2D chemical structures and impact sensitivity for nitro aromatic energetic compounds for the first time. Principal component analysis ranking-adaptive neuro-fuzzy inference systems (PCA Ranking-ANFIS) was employed to investigate relationship existed between descriptors and impact sensitivity. The analysis also statistically validated for its predictive power using external validation set, cross-validation, applicability domain and Y-randomization evaluation procedures. The satisfactory results (R2p=0.907, Q2LOO=0.895, R2L25%O=0.850, RMSELOO=0.152, RMSEL25%O=0.185 and r2m=0.711) make clear that the proposed model can be used to predict the impact sensitivity of new nitro aromatic compounds for engineering. The proposed analysis can be used to predict the impact sensitivity of new nitro aromatic energetic compounds.

کلیدواژه ها:

Impact sensitivity ، Nitro aromatic compounds ، MIA-QSPR ، Adaptive Neuro-Fuzzy Inference Systems

نویسندگان

M. Asadollahi-Baboli

Department of Science, Babol University of Technology, Mazandaran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Perssen, P.A., R. Holmberg, and J. Lee. (1993). Rock Blasting ...
  • Zhang, C., Y. Shu, Y. Huang, X. Zhang, and H. ...
  • Alamdari R.F., A. Mani-Varno sfaderani, M. Asadollahi -Baboli, and A. ...
  • Asadollahi-B aboli, M. (2012) Quantitative structure -activity relationship analysis of ...
  • Asadollahi-B aboli, M. (2011) Effect of weight updates functions in ...
  • Freitas, M.P. (2009) MIA-QSTR study of different organic compounds to ...
  • Wang, R., J. Jiang, Y. Pan, H. Cao, and Y. ...
  • Tropsha, A. (2010) Best practices for QSAR model development, validation ...
  • Roy, P., and K.Roy. (2002) On some aspects of variable ...
  • Ricker, C., G. Ricker, and M. Meringer. (2007) y-Randomizati _ ...
  • Hernandez, N., R. Kiralj, M. M.C. Ferreira, and I. Talavera. ...
  • Xu, J., D. Fang, L. Wang S. Xiao, L. Liu, ...
  • Prana, V., G. Fayet, P. Rotureau, and C. Adam. (2012) ...
  • Tropsha, A., P. Gramatica, and V.K. Gombar. 2003 The importance ...
  • نمایش کامل مراجع