Design and Dynamic Optimization of a Multilayer Piezoelectric as an External Ultrasonic Probe for Targeted Mechanical Stimulation in Tissue Regeneration

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 33

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMCH-8-7_004

تاریخ نمایه سازی: 19 مرداد 1404

چکیده مقاله:

In recent years, piezoelectric materials have garnered significant attention for their advantageous properties in promoting angiogenesis and facilitating cellular growth within damaged tissues. A particularly promising application of these materials lies in the development of piezoelectric probes that can apply specific frequencies to stimulate tissue regeneration. This study presents the systematic design, simulation, and optimization of a multilayer piezoelectric polymer composite ultrasonic probe engineered for both tissue simulation and biomedical imaging. By systematically incorporating a piezoelectric layer for optimal energy conversion, an elastomeric layer to modulate vibration transmission, and a biopolymeric layer to facilitate seamless interaction with biological tissues, this research endeavors to produce a lightweight, mechanically stable, and dynamically optimized probe design. By conducting comprehensive simulations, including stress analysis and frequency optimization, this study demonstrates that the proposed multilayer configuration, comprising PVDF, elastomer, and biopolymer, not only ensures structural integrity and operational efficiency but also effectively delivers targeted mechanical stimulation to promote angiogenesis and cellular proliferation in damaged tissue. Comprehensive modal and Von Mises stress analyses were conducted to evaluate the design's dynamic performance and structural integrity. The optimization process resulted in eigenfrequencies ranging from ۲.۹ kHz to ۹.۸ kHz, which are ideal for effective tissue stimulation. Moreover, the stress distribution analysis confirmed low-stress concentrations throughout the probe’s structure, thereby ensuring operational safety. The effective modal mass was minimized to enhance the probe's lightweight and efficient design, establishing its potential for real-world biomedical applications. This study establishes a robust groundwork for the practical deployment of intelligent, adaptable ultrasonic probes in clinical and biomedical environments. Furthermore, it sets a definitive perspective for subsequent experimental validation and continued advancement of the design, with a focus on exploring complex Multiphysics interactions within the probe system for enhanced functionality.

کلیدواژه ها:

نویسندگان

Zahra Geshani ⸸

Department of Biomedical Engineering, SR.C, Islamic Azad University, Tehran, Iran

Elham Banitalebi ⸸

Department of Mechanical Engineering, NT.C., Islamic Azad University, Tehran, Iran

Parmis Morovati

Department of Biomedical Engineering, SR.C, Islamic Azad University, Tehran, Iran

SeyedSalar Hasheminasab

Department of Biomedical Engineering, SR.C, Islamic Azad University, Tehran, Iran

Yasaman Ghasemi

Department of Mechanical Engineering, CT.C., Islamic Azad University, Tehran, Iran

Shahram Mahboubizadeh

Department of Biomedical Engineering, SR.C, Islamic Azad University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :