INDEPENDENT ۲-DOMINATION POLYNOMIALS IN THE GRAPH Cn

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 282

نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

GTACCA01_075

تاریخ نمایه سازی: 19 مرداد 1404

چکیده مقاله:

Let G (V,E) be a simple graph. A subset W C V is called an independent ۲-dominating set if the vertices in W are pairwise non-adjacent and every vertex in V \ W has at least two neighbors in W. The independent ۲-domination polynomial of a graph G, denoted by D½ ۳ (G, x), is the generating function in which the coefficient of xk counts the number of independent ۲-dominating sets of size k. In this paper, we compute the independent ۲-domination polynomial for the cycle graph Cn. We derive closed formulas for this polynomial in both cases where n is even or odd. Furthermore, we analyze the structural constraints that determine the existence of independent ۲-dominating sets in cycles and enumerate them based on their cardinality. Our results enrich the study of domination-type polynomials in symmetric and periodic graph structures.

نویسندگان

H. MAHMOUDZADEH

Department of Mathematics, Faculty of Mathematics, Statistics, and Computer Science, Semnan University, Semnan, Iran.

S. MOHAMMADIAN SEMNANI

Department of Mathematics, Faculty of Mathematics, Statistics, and Computer Science, Semnan University, Semnan, Iran.