Research Article: Smart tools and artificial intelligence for enhanced quality and safety in agriculture, fisheries, and aquaculture: A review
محل انتشار: مجله علوم شیلات ایران، دوره: 24، شماره: 4
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 29
فایل این مقاله در 39 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIFRO-24-4_013
تاریخ نمایه سازی: 19 مرداد 1404
چکیده مقاله:
This study investigates the transformative potential of smart tools and artificial intelligence (AI) in enhancing quality assurance and safety within the agriculture, fisheries, and aquaculture sectors. A structured analytical framework is used to evaluate key AI algorithms—Naive Bayes, Support Vector Machines (SVM), Deep Learning, Machine Learning (ML), Artificial Neural Networks (ANNs), Fuzzy Logic, and Random Forests—emphasizing their mathematical foundations and practical integration into intelligent systems. The convergence of AI with advanced technologies such as computer vision (CV), the Internet of Things (IoT), and sensor-based monitoring is identified as a catalyst for real-time decision-making, robust quality control, and improved operational efficiency across the food supply chain. In agriculture, AI-powered tools enable precision farming, early pest and disease detection, and data-driven crop health monitoring. In fisheries and aquaculture, intelligent systems support automated feeding, disease prediction, and sustainable resource utilization. This study applies a structured literature-based analysis combined with performance benchmarking from empirical studies, showcasing validated use cases and quantitative accuracy metrics across various AI applications. The integration of AI technologies significantly improves traceability, reduces post-harvest losses, and enhances food safety in complex supply networks. Reported outcomes indicate high performance, with accuracy rates exceeding ۸۰% in areas such as pathogen prediction, food recognition, microplastic detection, aquaculture optimization, and species classification. Specific applications show notable precision in microalgae classification (۹۷.۶۷–۹۷.۸۶%), seaweed identification (۹۳.۵%), and fish freshness assessment (up to ۱۰۰%). Despite these advancements, the study acknowledges ongoing challenges related to data standardization, infrastructure, and regulatory frameworks. The findings highlight the need for interdisciplinary collaboration and continuous innovation. Ultimately, the strategic adoption of AI and smart tools is essential for building resilient, secure, and sustainable food systems and also offers significant indicators for future research.
کلیدواژه ها:
نویسندگان
I. Kilinc
Katip Celebi University, Fisheries Faculty, Fish Processing Technology Department, ۳۵۶۱۰ CiGli-Izmir, Turkiye
B. Kilinc
Ege University, Fisheries Faculty, Fish Processing Technology Department, ۳۵۱۰۰ Bornova-Izmir, Turkiye
C. Takma
Ege University, Agriculture Faculty, Animal Science Department, Biometry and Genetics Unit, ۳۵۱۰۰ Bornova-Izmir, Turkiye
Y. Gevrekci
Ege University, Agriculture Faculty, Animal Science Department, Biometry and Genetics Unit, ۳۵۱۰۰ Bornova-Izmir, Turkiye
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :