Optimization Study of Centrifugal Fan Volute Parameters based on Non-dominated Sorting Genetic Algorithm III Algorithm

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 43

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAFM-18-10_003

تاریخ نمایه سازی: 18 مرداد 1404

چکیده مقاله:

To enhance the operational effectiveness of centrifugal fans under specific operating conditions, a Backpropagation (BP) neural network, combined with a reference point-based Non-dominated Sorting Genetic Algorithm III (NSGA-III), numerical simulation, and other techniques, was employed to perform multi-objective optimization. Three structural parameters of the fan volute, volute height (h), the minimum distance between the impeller and the volute tongue (β), and the radius of the volute tongue corner (r), were selected as design variables. Two performance indicators, outlet flow rate (Q) and total pressure efficiency (η), were chosen as optimization objectives. An efficient and accurate BP neural network was established as a surrogate model for predicting volute performance, and optimal design parameter combinations were obtained using the NSGA-III algorithm. The optimization results were subsequently validated through both experimental and numerical simulations. The results demonstrated strong agreement between simulation and experimental data. The BP neural network provided highly accurate fitting and predictions, yielding a reliable surrogate model. After optimization, the centrifugal fan’s Q increased by ۲.۲۹%, and η improved by ۲.۹۶%. Furthermore, structural improvements at the fan inlet enhanced the overall flow field, leading to a ۶.۰۶% increase in Q and a ۴.۰۴% increase in η compared to the original design. Overall, the dual optimization objectives were significantly improved, successfully meeting the specific operational requirements.

کلیدواژه ها:

Centrifugal fan ، Multi-objective optimization ، Numerical simulation ، BP-neural network ، Non-dominated sorting genetic algorithm III

نویسندگان

J. L. Li

Yunnan Provincial Key Laboratory of Advanced Equipment Intelligent Manufacturing Technology, Kunming, Yunnan, ۶۵۰۵۰۰, China

X. J. Wang

Yunnan Provincial Key Laboratory of Advanced Equipment Intelligent Manufacturing Technology, Kunming, Yunnan, ۶۵۰۵۰۰, China

H. Gong

Engineering Training Center, Kunming University of Science and Technology, Kunming, Yunnan, ۶۵۰۵۰۰, China

J. J. Wang

Yunnan Provincial Key Laboratory of Advanced Equipment Intelligent Manufacturing Technology, Kunming, Yunnan, ۶۵۰۵۰۰, China

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ai, W. S., & Chen, X. J. (۲۰۱۶). Influence of ...
  • Bi, X. J., & Wang, C. (۲۰۱۹). A reference point ...
  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (۲۰۲۲). ...
  • Ma, N., Meng, J., Luo, J., & Liu, Q. (۲۰۲۴). ...
  • Martins, D. M., Albuquerque, D. M., & Pereira, J. C. ...
  • Shinbara, N., Hatakeyama, M., Kodama, Y., & Hayashi, H. (۱۹۹۶). ...
  • Tantakitti, P., Pattana, S., & Wiratkasem, K. (۲۰۱۸). The performance ...
  • Tong, M. Z., Chen, X., Tong, S. G., Yu, Y., ...
  • Zhang, Z. J., Yu, Q. Y., Deng, Y. L., & ...
  • نمایش کامل مراجع