Hydrodynamic Characteristic and Prediction Study of ۱, ۱, ۱, ۲-Tetrafluoroethane under Supercritical Pressure

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 59

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAFM-18-10_010

تاریخ نمایه سازی: 18 مرداد 1404

چکیده مقاله:

The supercritical organic Rankine cycle (S-ORC) is highly effective for utilizing medium- and low-temperature heat sources. This study investigated the hydrodynamic behavior of supercritical-pressure ۱,۱,۱,۲-tetrafluoroethane (R۱۳۴a) within a horizontal ۲ mm circular tube through integrated experimental and machine learning techniques. Experimental investigations spanned pressures between ۴.۲ and ۵.۴ MPa, inlet temperatures between ۲۰ and ۵۰ °C, and heat fluxes between ۶۰ and ۳۰۰ kW/m². Systematic analysis of hydrodynamic characteristics was accompanied by predictive modeling using an extreme learning machine (ELM) framework to forecast pressure drop trends. The hydrodynamic characteristic (HDC) curve of supercritical R۱۳۴a exhibits significant differences from subcritical flow behavior—it lacks a negative-slope region but features a distinct “pressure drop stabilization region,” where pressure drop remains consistent across a broad range of mass flow rates. The pressure-drop stabilization region diminishes with elevated system pressure or inlet temperature but enhanced with heat flux. Mechanistic analysis revealed that the initiation of this region is predominantly influenced by frictional pressure drop, whereas its termination correlates with acceleration pressure drop. Crucially, no flow instabilities were detected within the pressure-drop stabilization region. However, operation in the low-mass-flow-rate regime of the curve induced dynamic oscillatory behavior, characterized by periodic fluctuations in the mass flow rate, wall and fluid outlet temperatures, system pressure, and pressure drop. These instabilities are attributed to axial fluid density gradients arising from localized thermal nonequilibrium. The ELM model demonstrated robust predictive performance, maintaining errors within ±۱۰% across all operating conditions, highlighting its effectiveness in analyzing supercritical hydrodynamic phenomena.

کلیدواژه ها:

نویسندگان

S. C. Liu

Engineer school, Qinhai Institute of Technology, Xining ۸۱۰۰۱۶, China

Z. G. Li

Engineer school, Qinhai Institute of Technology, Xining ۸۱۰۰۱۶, China

W. Han

Key Laboratory of Advanced Pumps, Valves and Fluid Control System of the Ministry of Education, Lanzhou University of Technology, Lanzhou ۷۳۰۰۵۰, China

Y. X. Jiao

Engineer school, Qinhai Institute of Technology, Xining ۸۱۰۰۱۶, China

S. M. Zheng

State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an ۷۱۰۰۴۸, China

X. T. Song

Engineer school, Qinhai Institute of Technology, Xining ۸۱۰۰۱۶, China

J. H. Kou

State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an ۷۱۰۰۴۸, China

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ahmed, G., Peiwen, L., Abdel, L., & Babkir, A. (۲۰۲۴). ...
  • Li, C., Fang, X., & Dai, Q. (۲۰۲۲). Two-phase flow ...
  • Manickathan, L., Mucignat, C., & Lunati, I. (۲۰۲۳). A lightweight ...
  • نمایش کامل مراجع