Solar panel fault diagnosis based on the intelligent recursive method

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 46

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-19-2_005

تاریخ نمایه سازی: 18 مرداد 1404

چکیده مقاله:

The solar panel or solar cell is one of the most important components of the solar system that produces electrical energy with high efficiency compatible with electrical loads, but any defect in this cell can cause its efficiency to decrease. The objective of this work is to establish a fault diagnosis method that can be implemented in a real structure. These faults are diagnosed and located by implementing an algorithm based on the measured values of the solar panel using an intelligent recursive least squares approach. Our objective is to contribute to the diagnosis of faults in photovoltaic systems based on fuzzy logic in a recurrent manner. The integration of recursive least squares (RLS) with fuzzy logic are essential to improve system efficiency and reliability. This approach enables rapid identification and resolution of faults, helping to avoid energy losses, reduce downtime, and support proactive maintenance. It guarantees the optimal functioning of solar panels, maximizing energy production and improving return on investment. Quantitatively, this method achieves high diagnostic accuracy (over ۹۰%), reduces error rates by up to ۳۰% under dynamic conditions, andprovides real-time fault detection with minimal latency. The combination of RLS and fuzzy logic improves fault diagnosis by effectively handling uncertainties and handling ambiguous situations better than traditional methods.

نویسندگان

Saadat Boulanouar

Faculty of Technology, University of Chlef ۰۲۰۰۰ DZ, Algeria

Fengal Boualem

Faculty of Technology, University of Chlef ۰۲۰۰۰ DZ, Algeria

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Power FS, 'Global Market Outlook' ۲۰۱۶. http://www.solarpowereurope.orgTriki-lahiani, A.B. Abdelghani and ...
  • Bun, “Détection et localisation de défauts dans un système photovoltaïque”, ...
  • Mellit, G.M. Tina and S.A. Kalogirou, “Fault detection and diagnosis ...
  • Garoudja, F. Harrou, Y. Sun, K. Kara, A. Chouder and ...
  • Hirata Y, Noro S, Aoki T, Miyazawa S. “Diagnosis Photovoltaic ...
  • Aouchiche N, Becherif M, HadjArab A, Aitcheikh MS, Ramadan HS, ...
  • Bizon, 'Global Extremum Seeking Control of the power generated by ...
  • Bernadette, Bouchon-Meunier “Logique floue, principes, aide à la décision“. Lavoisier, ...
  • Angelov, P. et X. Zhou (۲۰۰۸). “Evolving fuzzy-rule-based classifiers from ...
  • Zhou and W. Sun, 'Study on maximum power point tracking ...
  • Savita Nema, R.K. Nema, Gayatri Agnihotri, “MATLAB/Simulink based study of ...
  • Smith JA et al. ‘’ Enhancing solar power forecasting accuracy ...
  • Neeraj Priyadarshi, Sanjeevikumar Padmanaban , Jens Bo Holm-Nielsen, Frede Blaabjerg ...
  • Neeraj Priyadarshi, Sanjeevikumar Padmanaban, Mahajan Sagar Bhaskar, Farooque Azam, Baseem ...
  • Neeraj Priyadarshi, P. Sanjeevikumar, MS Bhaskar, Farooque Azam, Ibrahim B. ...
  • Neeraj Priyadarshi, Sanjeevikumar Padmanaban, Mahajan Sagar Bhaskar, Baseem Khan.’’An experimental ...
  • Neeraj Priyadarshi, Pandav Kiran Maroti, Baseem Khan.’’ An adaptive grid ...
  • Ashish Singh Chauhan, Rajesh Singh, Neeraj Priyadarshi, Bhekisipho Twala, · ...
  • نمایش کامل مراجع