Performance evaluation of CA-, GO- and SO-CFAR processors in a non-centered L´evy-distributed clutter

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 18

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-19-2_018

تاریخ نمایه سازی: 18 مرداد 1404

چکیده مقاله:

Constant false alarm rate (CFAR) processors are critical for radar reliable target detection in radar systems. Traditional CFAR designs often assume Gaussian clutter, which may not reflect real-world conditions. L´evy distributions, with heavy tails and a location parameter (δ), provide a more accurate model for non-Gaussian and non-centered clutter in complex environments. This paper presents a comprehensive performance analysis of three widely used CFAR processors-cell-averaging (CA), greatest-of (GO), and smallest-of (SO) in homogeneous L´evy-distributed clutter with an arbitrary δ. We derive integral-form expressions for the probability of false alarm (PFA) for each processor, explicitly incorporating δ. Furthermore, we provide analytical formulations for the probability density function (PDF) of key statistics involving L´evy random variables, such as sums, minima, and maxima. Monte Carlo simulations validate the theoretical results,showing that the PFA performance improves with increasing δ, highlighting the critical impact of clutter location on CFAR detector performance. These findings offer valuable insights for designing robust CFAR detectors in non-Gaussian, non-centered clutter environments.

کلیدواژه ها:

Cell-averaging constant false alarm rate ، Constant false alarm rate processors ، Greatest-of constant false alarm rate ، L´evy-distributed clutter ، Probability of false alarm ، Smallest-of constant false alarm rate

نویسندگان

El-Hadi Meftah

LISIC Laboratory, Faculty of Electrical Engineering, USTHB, Bab-Ezzouar, Algiers, Algeria.

Abdelhalim Rabehi

Laboratory of Telecommunications and Smart Systems, University of Ziane Achour, Djelfa, Algeria.

Slimane Benmahmoud

Department of Electronic Engineering, University of M’sila, M’sila, Algeria.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • P. Gandhi and S. A. Kassam, “Analysis of CFAR processors ...
  • Dai, P. Wang, H. Wei, and Y. Xu, “Adaptive detection ...
  • Zhou and J. Xie, “Performance analysis of linearly combined order ...
  • Chen, A. Chen, W. Liu, and X. Ma, “CFAR detection ...
  • P. Gandhi and S. A. Kassam, “Optimality of the cell ...
  • G. Hansen and J. H. Sawyers, “Detectability Loss due to ...
  • Weiss, “Analysis of Some Modified Cell-Averaging CFAR Processors in Multiple-Target ...
  • V. Trunk, “Range resolution of targets using automatic detectors,” EEE ...
  • T. Rickard and G.M. Dillard, “Adaptive detection algorithm for multiple ...
  • Sim, J. Heo, Y. Jung, S. Lee, and Y. Jung, ...
  • H. Kerbaa, A. Mezache and H. Oudira, “Improved Decentralized SO-CFAR ...
  • P. Jiménez Jiménez, F. D. A. García, M. C. L. ...
  • C. Luna Alvarado, F. D. A. García, L. P. J. ...
  • Rohling, “Radar CFAR thresholding in clutter and multiple target situations,”IEEE ...
  • Guida, M. J. Longo, and M. Lops, “Biparametric CFAR procedures ...
  • Rifkin, “Analysis of CFAR performance in Weibull clutter,”IEEE Trans. Aerosp. ...
  • Watts, “Cell-averaging CFAR gain in spatially correlated k-distributed clutter,”IEE Proc.-Radar ...
  • V. Weinberg, “Constant false alarm rate detectors for Pareto clutter ...
  • A. Aalo, K. P. Peppas, and G. Efthymoglou, “Performance of ...
  • Tsakalides, F. Trinic and C. L. Nikias, “Performance assessment of ...
  • Meziani and F. Soltani, “Performance Analysis of Some CFAR Detectors ...
  • Zhang, X. Wang, and S. Zhang, “Persymmetric Adaptive Target Detection ...
  • Li, Y. Wang, and X. Zhang, “Adaptive Persymmetric Subspace Detection ...
  • Salehi, M. Imani, A. Zaimbashi, and H. Yanikomeroglu, “Learning and ...
  • Zebiri and A. Mezache, “CFAR detection using two scale invariant ...
  • C. Luna Alvarado, F. D. A. García, L. P. J. ...
  • Abbadi, H. Bouhedjeur, A. Bellabas, T. Menni, and F. Soltani, ...
  • Garvanov, “Probability characteristics of CFAR processors in presence of randomly ...
  • Baadeche, M. A. Bouteldja, and F. Soltani, “Target detection performance ...
  • Zhou, J. Xie, G. Li, and Y. Du, “Robust CFAR ...
  • Zhou, J. Xie, B. Zhang, and G. Li, “Maximum likelihood ...
  • Sahed, E. Kenane, A. Khalfa, and F. Djahli, “Exact closed-form ...
  • S. Gradshteyn, I. M. Ryzhik, D. Zwillinger, and V. Moll, Table ...
  • نمایش کامل مراجع