Improving the criteria of electricity consumption forecasting in petrochemical industrial units based on deep learning

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 28

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-19-2_019

تاریخ نمایه سازی: 18 مرداد 1404

چکیده مقاله:

Accurate forecasting of electricity consumption in petrochemical industrial units is essential for optimizing energy management and ensuring operational efficiency. This study presents a novel deep learning framework that integrates advanced feature engineering and Long Short-Term Memory (LSTM) networks to address the challenges posed by irregular seasonal trends and dynamic consumption patterns. Key innovations include the use of Fourier Transform-based feature extraction for enhanced data representation and a hybrid genetic-sparse matrix optimization technique for feature selection, ensuring high predictive performance. The proposed method effectively mitigates issues related to data irregularities through preprocessing techniques, resulting in improved accuracy and stability in both univariate and multivariate time series forecasting scenarios. Experimental evaluations using benchmark datasets demonstrate significant improvements, achieving a Root Mean Square Error (RMSE) of ۰.۰۶۹۳ and a Mean Absolute Percentage Error (MAPE) reduction of over ۱۵% compared to state-of-the-art methods. These results highlight the robustness and practical applicability of the proposed framework for industrial energy consumption forecasting and sustainable energy management.

نویسندگان

Ehsan Tavakoli Garmaserh

Department of Electrical Engineering, Majlesi Branch, Islamic Azad University, Majlesi, Isfahan, Iran.

Mehran Emadi

Department of Electrical Engineering, Mo.C., Islamic Azad University, Isfahan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Rahman, V. Srikumar, and A. D. Smith, “Predicting electricity consumption ...
  • Aryanmehr, M. Karimi, and F. Z. Boroujeni, "CVBL IRIS gender ...
  • Zhao, Z. Liu, Y. He, H. Cao, and Y. Guo, ...
  • P. Center, “Annual energy outlook ۲۰۲۰,” Energy Information Administration, Washington, ...
  • Somu, G. R. MR, and K. Ramamritham, “A hybrid model ...
  • Raftarai, R. R. Mahounaki, M. Harouni, M. Karimi, and S. ...
  • Wang, M. Su, and R. Li, “Toward to economic growth ...
  • S. Seyed Abolghasemi, M. Emadi, and M. Karimi, “Accuracy Improvement ...
  • W.-Z. Wu, Z. Hu, Q. Qi, and T. Zhang, “An ...
  • Harouni, M. Karimi, A. Nasr, H. Mahmoudi, and Z. Arab ...
  • Karimi, M. Harouni, E. I. Jazi, A. Nasr, and N. ...
  • R. Khan, F. Doosti, M. Karimi, M. Harouni, U. Tariq, ...
  • Alshammari, “Generation forecasting employing Deep Recurrent Neural Network with metaheruistic ...
  • Usha Rani, N. Saravana Selvam, and L. Jegatha Deborah, “An ...
  • Brown, N. Ghavami, M. Adjrad, M. Ghavami, and S. Dudley, ...
  • Yang, G. Li, T. Luo, M. Al-Bahrani, E. A. Al-Ammar, ...
  • Gupta, and A. Tomar, "Deep Learning Techniques for Load Forecasting,"Prediction ...
  • Caspart, S. Ziegler, A. Weyrauch, H. Obermaier, S. Raffeiner, L. ...
  • Emadi, M. Karimi, and F. Davoudi, “A Review on Examination ...
  • Shwetha, R. Sapna, and S. P. Raja, "Analysis of Individual ...
  • Yin, X. Zheng, B. Hu, Y. Zhang, and X. Cui, ...
  • Karimi, M. Harouni, and S. Rafieipour, "Automated medical image analysis ...
  • Rehman, M. Harouni, F. Zogh, T. Saba, M. Karimi, and ...
  • Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and ...
  • Zhang, X. Li, A. Zhou, K. Ren, and J. Song, ...
  • Pérez-Gomariz, A. López-Gómez, and F. Cerdán-Cartagena, “Artificial neural networks as ...
  • Sekhar, and R. Dahiya, “Robust framework based on hybrid deep ...
  • Navabifar, and M. Emadi, “A Fusion Approach Based on HOG ...
  • M. Williams, and L. A. Hoel, “Modeling and forecasting vehicular ...
  • Zhuo, Q. Li, H. Yan, and Y. Qi, "Long short-term ...
  • Tang, X. Chen, Z. Hu, F. Zong, C. Han, and ...
  • L. Karri, L. C. De Silva, D. T. C. Lai, ...
  • Qu, J. Lyu, W. Li, D. Ma, and H. Fan, ...
  • Fernandez, and G. C. Pallis, "Opportunities and challenges of the ...
  • Dinmohammadi, Y. Han, and M. Shafiee, “Predicting Energy Consumption in ...
  • Li, Y. Guo, Z. Fu, X. Zhang, and F. Shen, ...
  • Panjapornpon, S. Bardeeniz, and M. A. Hussain, “Improving energy efficiency ...
  • Zhou, H. Jiang, Y. Cheng, L. Pei, and S. Ding, ...
  • Faiq, K. G. Tan, C. P. Liew, F. Hossain, C.-P. ...
  • Chen, and Z. Fu, “Multi-Step Ahead Forecasting of the Energy ...
  • Pavlicko, M. Vojteková, and O. Blažeková, “Forecasting of electrical energy ...
  • Divina, J. F. Torres Maldonado, M. García-Torres, F. Martínez-Álvarez, and ...
  • Najafabadi, and M. Ramezanpour, “Mass center direction-based decision method for ...
  • Heidari, and M. Ramezanpour, “Reduction of intra-coding time for HEVC ...
  • Teeraratkul, D. O’Neill, and S. Lall, “Shape-based approach to household ...
  • Mocanu, P. H. Nguyen, M. Gibescu, and W. L. Kling, ...
  • Loginov, M. I. Heywood, and G. Wilson, "Benchmarking a coevolutionary ...
  • Wu, and X. Zhao, "Traffic time series prediction based on ...
  • Akbari, and M. Emadi, “Detection of brain tumors from magnetic ...
  • Emadi, Z. Jafarian Dehkordi, and M. Iranpour Mobarakeh, “Improving the ...
  • Emadi, and M. Emadi, “Human Face Detection in Color Images ...
  • Xiang Li, Yongqi Zhang, Lei Chen, Jia Li, Xiaowen Chu, ...
  • Lucas de Azevedo Takara, Ana Clara Teixeira, Hamed Yazdanpanah, Viviana ...
  • نمایش کامل مراجع